Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appetite ; 96: 254-259, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26431682

ABSTRACT

Three experiments were done to better assess the gastrointestinal (GI) site(s) of action of GLP-1 on food intake in rats. First, near-spontaneous nocturnal chow meal size (MS), intermeal intervals (IMI) length and satiety ratios (SR = MS/IMI) were measured after infusion of saline, 0.025 or 0.5 nmol/kg GLP-1 into the celiac artery (CA, supplying the stomach and upper duodenum), cranial mesenteric artery (CMA, supplying small and all of the large intestine except the rectum), femoral artery (FA, control) or portal vein (PV, control). Second, infusion of 0.5 nmol/kg GLP-1 was tested after pretreatment with the GLP-1 receptor (GLP-1R) antagonist exendin-4(3-39) via the same routes. Third, the regional distribution of GLP-1R in the rat GI tract was determined using rtPCR. CA, CMA and FA GLP-1 reduced first MS relative to saline, with the CMA route more effective than the others. Only CMA GLP-1 prolonged the IMI. None of the infusions affected second MS or later eating. CA and CMA GLP-1 increased the SR, with the CMA route more effective than the CA route. CMA exendin-4 (3-39) infusion reduced the effect of CMA GLP-1. Finally GLP-1R expression was found throughout the GI tract. The results suggest that exogenous GLP-1 acts in multiple GI sites to reduce feeding under our conditions and that GLP-1R in the area supplied by the CMA, i.e., the small and part of the large intestine, plays the leading role.


Subject(s)
Feeding Behavior/drug effects , Glucagon-Like Peptide 1/pharmacology , Portion Size , Animals , Celiac Artery/drug effects , Celiac Artery/metabolism , Exenatide , Femoral Artery/drug effects , Femoral Artery/metabolism , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Genetic Loci , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Glucagon-Like Peptide-1 Receptor/genetics , Glucagon-Like Peptide-1 Receptor/metabolism , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Peptides/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Satiation/drug effects , Venoms/pharmacology
2.
Horm Behav ; 67: 48-53, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25479193

ABSTRACT

The site(s) of action that control meal size and intermeal interval (IMI) length by cholecystokinin-58 (CCK-58), the only detectable endocrine form of CCK in the rat, are not known. To test the hypothesis that the gastrointestinal tract may contain such sites, we infused low doses of CCK-58 (0.01, 0.05, 0.15 and 0.25nmol/kg) into the celiac artery (CA, supplying stomach and upper duodenum), the cranial mesenteric artery (CMA, supplying small and most of the large intestines), the femoral artery (FA, control) and the portal vein (PV, draining the gastrointestinal tract) prior to the onset of the dark cycle in freely fed male rats. We measured the first meal size (chow), second meal size, IMI and satiety ratio (SR, IMI/meal size). We found that (1) all doses of CCK-58 given in the CA and the highest dose given in the CMA reduced the first meal size, (2) all doses of CCK-58 given in the CA reduced the second meal size, (3) a CCK-58 dose of 0.15nmol/kg given in the CA and 0.15 and 0.25nmol/kg given in the CMA prolonged the IMI, (4) CCK-58 (0.05, 0.15, 0.25nmol/kg) given in the CA and 0.25nmol/kg given in the CMA increased the SR, and (5) CCK-58 given in the FA and PV had no effect on the meal size or intermeal interval. These results support our hypothesis that the gastrointestinal tract contains sites of action that regulate meal size and IMI length via CCK-58. The stomach and upper duodenum may contain sites regulating meal size, whereas the small intestine and part of the large intestine may contain sites regulating the IMI.


Subject(s)
Celiac Artery/metabolism , Cholagogues and Choleretics/pharmacology , Cholecystokinin/pharmacology , Feeding Behavior/physiology , Mesenteric Artery, Superior/metabolism , Satiety Response/physiology , Animals , Cholagogues and Choleretics/administration & dosage , Cholecystokinin/administration & dosage , Femoral Artery/metabolism , Male , Portal Vein/metabolism , Rats , Rats, Sprague-Dawley , Satiety Response/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...