Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BJR Open ; 2(1): 20190045, 2020.
Article in English | MEDLINE | ID: mdl-33178966

ABSTRACT

OBJECTIVE: Preclinical animal models allow testing and refinement of novel therapeutic strategies. The most common preclinical animal irradiators are fixed source cabinet irradiators, which are vastly inferior to clinical linear accelerators capable of delivering highly conformal and precise treatments. The purpose of this study was to design, manufacture and test an irradiation jig (small animal focal irradiation jig, SARJ) that would enable focal irradiation of subcutaneous tumours in a standard fixed source cabinet irradiator. METHODS AND MATERIALS: A lead shielded SARJ was designed to rotate animal holders about the longitudinal axis and slide vertically from the base plate. Radiation dosimetry was undertaken using the built-in ion chamber and GAFChromic RTQA2 and EBT-XD films. Treatment effectiveness was determined by irradiating mice with subcutaneous melanoma lesions using a dose of 36 Gy in three fractions (12 Gy x 3) over three consecutive days. RESULTS: The SARJ was tested for X-ray shielding effectiveness, verification of dose rate, total dose delivered to tumour and dose uniformity. Accurate and uniform delivery of X-ray dose was achieved. X-ray doses were limited to the tumour site when animal holders were rotated around their longitudinal axis to 15o and 195o, allowing sequential dose delivery using parallel-opposed tangential beams. Irradiation of subcutaneous melanoma tumour established on the flanks of mice showed regression. CONCLUSION: SARJ enabled delivery of tangential parallel-opposed radiation beams to subcutaneous tumours in up to five mice simultaneously. SARJ allowed high throughput testing of clinically relevant dose delivery using a standard cabinet-style fixed source irradiator. ADVANCES IN KNOWLEDGE: A custom designed jig has been manufactured to fit into conventional cabinet irradiators and is dosimetrically validated to deliver clinically relevant dose distributions to subcutaneous tumours in mice for preclinical studies.

2.
Med Phys ; 41(11): 111702, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25370616

ABSTRACT

PURPOSE: Small field x-ray beam dosimetry is difficult due to lack of lateral electronic equilibrium, source occlusion, high dose gradients, and detector volume averaging. Currently, there is no single definitive detector recommended for small field dosimetry. The objective of this work was to evaluate the performance of a new commercial synthetic diamond detector, namely, the PTW 60019 microDiamond, for the dosimetry of small x-ray fields as used in stereotactic radiosurgery (SRS). METHODS: Small field sizes were defined by BrainLAB circular cones (4-30 mm diameter) on a Novalis Trilogy linear accelerator and using the 6 MV SRS x-ray beam mode for all measurements. Percentage depth doses (PDDs) were measured and compared to an IBA SFD and a PTW 60012 E diode. Cross profiles were measured and compared to an IBA SFD diode. Field factors, ΩQclin,Qmsr (fclin,fmsr) , were calculated by Monte Carlo methods using BEAMnrc and correction factors, kQclin,Qmsr (fclin,fmsr) , were derived for the PTW 60019 microDiamond detector. RESULTS: For the small fields of 4-30 mm diameter, there were dose differences in the PDDs of up to 1.5% when compared to an IBA SFD and PTW 60012 E diode detector. For the cross profile measurements the penumbra values varied, depending upon the orientation of the detector. The field factors, ΩQclin,Qmsr (fclin,fmsr) , were calculated for these field diameters at a depth of 1.4 cm in water and they were within 2.7% of published values for a similar linear accelerator. The corrections factors, kQclin,Qmsr (fclin,fmsr) , were derived for the PTW 60019 microDiamond detector. CONCLUSIONS: The authors conclude that the new PTW 60019 microDiamond detector is generally suitable for relative dosimetry in small 6 MV SRS beams for a Novalis Trilogy linear equipped with circular cones.


Subject(s)
Radiometry/methods , Radiosurgery/methods , Algorithms , Diamond/chemistry , Humans , Monte Carlo Method , Particle Accelerators , Radiotherapy Planning, Computer-Assisted , Water/chemistry , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...