Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
2.
Hum Mutat ; 42(7): 827-834, 2021 07.
Article in English | MEDLINE | ID: mdl-33942450

ABSTRACT

Mental deficiency, epilepsy, hypogonadism, microcephaly, and obesity syndrome is a severe X-linked syndrome caused by pathogenic variants in EIF2S3. The gene encodes the γ subunit of the eukaryotic translation initiation factor-2, eIF2, essential for protein translation. A recurrent frameshift variant is described in severely affected patients while missense variants usually cause a moderate phenotype. We identified a novel missense variant (c.433A>G, p.(Met145Val)) in EIF2S3 in a mildly affected patient. Studies on zebrafish confirm the pathogenicity of this novel variant and three previously published missense variants. CRISPR/Cas9 knockout of eif2s3 in zebrafish embryos recapitulate the human microcephaly and show increased neuronal cell death. Abnormal high glucose levels were identified in mutant embryos, caused by beta cell and pancreatic progenitor deficiency, not related to apoptosis. Additional studies in patient-derived fibroblasts did not reveal apoptosis. Our results provide new insights into disease physiopathology, suggesting tissue-dependent mechanisms.


Subject(s)
Mental Retardation, X-Linked , Zebrafish , Animals , Genitalia , Humans , Mental Retardation, X-Linked/genetics , Mutation , Phenotype , Zebrafish/genetics
3.
J Sci Med Sport ; 23(1): 75-81, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31526663

ABSTRACT

OBJECTIVES: To examine iron stores, hemoglobin mass, and performance before, during and after intermittent altitude exposure in a professional male rugby player experiencing iron overload following blood transfusions for treatment for acute myeloid leukemia. DESIGN: Longitudinal, repeated measures, single case-study. METHODS: The player was followed prior to (control), and during (study), an in-season block of altitude training. During the control period two venesections were performed for a total of 750mL of blood removal. Internal and external training load, match statistics, blood volume, plasma volume, haemoglobin mass, serum ferritin and reticulocyte count were monitored throughout. RESULTS: During the control period serum ferritin declined following the two venesections (∼51%) as did haemoglobin mass (∼2%), reticulocyte count remained stable. During the study period serum ferritin further declined (∼30%), however haemoglobin mass and reticulocyte count increased (∼4% and ∼14% respectively). Internal training load for the control and study period was similar, however external training load was lower in the study period. Match statistics were not favourable for the player during the control period, however they improved during the study period. CONCLUSIONS: This case supports the theory that individuals with elevated iron availability are well placed to achieve increases in haemoglobin mass. Furthermore, although therapeutic venesections may still be required to manage iron overload, the addition of altitude exposure may be a method to assist in reducing total body iron by means of mobilising available (excessive) iron to incorporate into haemoglobin. Altitude exposure did not hinder the players' performance. Further research is encouraged.


Subject(s)
Altitude , Iron Overload/therapy , Leukemia/therapy , Physical Conditioning, Human , Adult , Athletes , Blood Transfusion , Ferritins/blood , Football , Hemoglobins/analysis , Humans , Iron Overload/etiology , Leukemia/complications , Longitudinal Studies , Male , Reticulocyte Count , Single-Case Studies as Topic
4.
Carcinogenesis ; 41(4): 417-429, 2020 06 17.
Article in English | MEDLINE | ID: mdl-31504251

ABSTRACT

Glioblastoma (GBM) is the most frequent and aggressive primary tumor in the central nervous system. Previously, the secretion of CXCL12 in the brain subventricular zones has been shown to attract GBM cells and protect against irradiation. However, the exact molecular mechanism behind this radioprotection is still unknown. Here, we demonstrate that CXCL12 modulates the phosphorylation of MAP kinases and their regulator, the nuclear MAP kinase phosphatase 1 (MKP1). We further show that MKP1 is able to decrease GBM cell death and promote DNA repair after irradiation by regulating major apoptotic players, such as Jun-N-terminal kinase, and by stabilizing the DNA repair protein RAD51. Increases in MKP1 levels caused by different corticoid treatments should be reexamined for GBM patients, particularly during their radiotherapy sessions, in order to prevent or to delay the relapses of this tumor.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Chemokine CXCL12/metabolism , DNA Repair , DNA/metabolism , Dual Specificity Phosphatase 1/metabolism , Glioblastoma/genetics , Apoptosis , Biomarkers, Tumor/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation , Chemokine CXCL12/genetics , DNA/genetics , DNA/radiation effects , Dual Specificity Phosphatase 1/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Phosphorylation , Prognosis , Signal Transduction , Survival Rate , Tumor Cells, Cultured
5.
Trends Ecol Evol ; 35(1): 56-67, 2020 01.
Article in English | MEDLINE | ID: mdl-31676190

ABSTRACT

With the expansion in the quantity and types of biodiversity data being collected, there is a need to find ways to combine these different sources to provide cohesive summaries of species' potential and realized distributions in space and time. Recently, model-based data integration has emerged as a means to achieve this by combining datasets in ways that retain the strengths of each. We describe a flexible approach to data integration using point process models, which provide a convenient way to translate across ecological currencies. We highlight recent examples of large-scale ecological models based on data integration and outline the conceptual and technical challenges and opportunities that arise.


Subject(s)
Biodiversity , Ecology , Models, Theoretical
6.
EMBO Rep ; 20(9): e47097, 2019 09.
Article in English | MEDLINE | ID: mdl-31321879

ABSTRACT

Protein homeostasis is essential to cell function, and a compromised ability to reduce the load of misfolded and aggregated proteins is linked to numerous age-related diseases, including hearing loss. Here, we show that altered proteostasis consequent to Elongator complex deficiency also impacts the proper development of the cochlea and results in deafness. In the absence of the catalytic subunit Elp3, differentiating spiral ganglion neurons display large aggresome-like structures and undergo apoptosis before birth. The cochlear mechanosensory cells are able to survive proteostasis disruption but suffer defects in polarity and stereociliary bundle morphogenesis. We demonstrate that protein aggregates accumulate at the apical surface of hair cells, where they cause a local slowdown of microtubular trafficking, altering the distribution of intrinsic polarity proteins and affecting kinocilium position and length. Alleviation of protein misfolding using the chemical chaperone 4-phenylbutyric acid during embryonic development ameliorates hair cell polarity in Elp3-deficient animals. Our study highlights the importance of developmental proteostasis in the cochlea and unveils an unexpected link between proteome integrity and polarized organization of cellular components.


Subject(s)
Cochlea/cytology , Cochlea/metabolism , Hair Cells, Auditory/cytology , Hair Cells, Auditory/physiology , Proteostasis/physiology , Cell Polarity/genetics , Cell Polarity/physiology , Fluorescent Antibody Technique , HEK293 Cells , Hair Cells, Auditory/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , In Situ Hybridization , Microscopy, Confocal , Microscopy, Electron, Scanning , Models, Biological , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Folding , Proteostasis/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
7.
Ecol Evol ; 9(2): 769-779, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30766667

ABSTRACT

Bird ring-recovery data have been widely used to estimate demographic parameters such as survival probabilities since the mid-20th century. However, while the total number of birds ringed each year is usually known, historical information on age at ringing is often not available. A standard ring-recovery model, for which information on age at ringing is required, cannot be used when historical data are incomplete. We develop a new model to estimate age-dependent survival probabilities from such historical data when age at ringing is not recorded; we call this the historical data model. This new model provides an extension to the model of Robinson, 2010, Ibis, 152, 651-795 by estimating the proportion of the ringed birds marked as juveniles as an additional parameter. We conduct a simulation study to examine the performance of the historical data model and compare it with other models including the standard and conditional ring-recovery models. Simulation studies show that the approach of Robinson, 2010, Ibis, 152, 651-795 can cause bias in parameter estimates. In contrast, the historical data model yields similar parameter estimates to the standard model. Parameter redundancy results show that the newly developed historical data model is comparable to the standard ring-recovery model, in terms of which parameters can be estimated, and has fewer identifiability issues than the conditional model. We illustrate the new proposed model using Blackbird and Sandwich Tern data. The new historical data model allows us to make full use of historical data and estimate the same parameters as the standard model with incomplete data, and in doing so, detect potential changes in demographic parameters further back in time.

8.
Sci Adv ; 5(12): eaax2705, 2019 12.
Article in English | MEDLINE | ID: mdl-31897425

ABSTRACT

Microtubules are polymerized dimers of α- and ß-tubulin that underlie a broad range of cellular activities. Acetylation of α-tubulin by the acetyltransferase ATAT1 modulates microtubule dynamics and functions in neurons. However, it remains unclear how this enzyme acetylates microtubules over long distances in axons. Here, we show that loss of ATAT1 impairs axonal transport in neurons in vivo, and cell-free motility assays confirm a requirement of α-tubulin acetylation for proper bidirectional vesicular transport. Moreover, we demonstrate that the main cellular pool of ATAT1 is transported at the cytosolic side of neuronal vesicles that are moving along axons. Together, our data suggest that axonal transport of ATAT1-enriched vesicles is the predominant driver of α-tubulin acetylation in axons.


Subject(s)
Acetyltransferases/metabolism , Axonal Transport/physiology , Microtubule Proteins/metabolism , Microtubules/metabolism , Acetylation , Acetyltransferases/genetics , Animals , Drosophila melanogaster/metabolism , Female , HEK293 Cells , HeLa Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Larva/physiology , Locomotion , Male , Mice , Mice, Knockout , Microtubule Proteins/genetics , Neurons/metabolism , Tubulin/metabolism
9.
PLoS One ; 13(1): e0189681, 2018.
Article in English | MEDLINE | ID: mdl-29298300

ABSTRACT

Due to concerns over negative impacts on insect pollinators, the European Union has implemented a moratorium on the use of three neonicotinoid pesticide seed dressings for mass-flowering crops. We assessed the effectiveness of this policy in reducing the exposure risk to honeybees by collecting 130 samples of honey from bee keepers across the UK before (2014: N = 21) and after the moratorium was in effect (2015: N = 109). Neonicotinoids were present in about half of the honey samples taken before the moratorium, and they were present in over a fifth of honey samples following the moratorium. Clothianidin was the most frequently detected neonicotinoid. Neonicotinoid concentrations declined from May to September in the year following the ban. However, the majority of post-moratorium neonicotinoid residues were from honey harvested early in the year, coinciding with oilseed rape flowering. Neonicotinoid concentrations were correlated with the area of oilseed rape surrounding the hive location. These results suggest mass flowering crops may contain neonicotinoid residues where they have been grown on soils contaminated by previously seed treated crops. This may include winter seed treatments applied to cereals that are currently exempt from EU restrictions. Although concentrations of neonicotinoids were low (<2.0 ng g-1), and posed no risk to human health, they may represent a continued risk to honeybees through long-term chronic exposure.


Subject(s)
Honey/analysis , Neonicotinoids/analysis , Pesticide Residues/analysis , Crops, Agricultural , European Union , United Kingdom
10.
Biochem J ; 474(17): 2903-2924, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28801478

ABSTRACT

Phosphatases and cancer have been related for many years now, as these enzymes regulate key cellular functions, including cell survival, migration, differentiation and proliferation. Dysfunctions or mutations affecting these enzymes have been demonstrated to be key factors for oncogenesis. The aim of this review is to shed light on the role of four different phosphatases (PTEN, PP2A, CDC25 and DUSP1) in five different solid tumors (breast cancer, lung cancer, pancreatic cancer, prostate cancer and ovarian cancer), in order to better understand the most frequent and aggressive primary cancer of the central nervous system, glioblastoma.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Central Nervous System Neoplasms/enzymology , Glioblastoma/enzymology , Neoplasm Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Central Nervous System Neoplasms/genetics , Female , Glioblastoma/genetics , Humans , Male , Neoplasm Proteins/genetics , Phosphoprotein Phosphatases/genetics
11.
Nature ; 543(7646): 547-549, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28297711

ABSTRACT

Insect pollinators such as bumblebees (Bombus spp.) are in global decline. A major cause of this decline is habitat loss due to agricultural intensification. A range of global and national initiatives aimed at restoring pollinator habitats and populations have been developed. However, the success of these initiatives depends critically upon understanding how landscape change affects key population-level parameters, such as survival between lifecycle stages, in target species. This knowledge is lacking for bumblebees, because of the difficulty of systematically finding and monitoring colonies in the wild. We used a combination of habitat manipulation, land-use and habitat surveys, molecular genetics and demographic and spatial modelling to analyse between-year survival of family lineages in field populations of three bumblebee species. Here we show that the survival of family lineages from the summer worker to the spring queen stage in the following year increases significantly with the proportion of high-value foraging habitat, including spring floral resources, within 250-1,000 m of the natal colony. This provides evidence for a positive impact of habitat quality on survival and persistence between successive colony cycle stages in bumblebee populations. These findings also support the idea that conservation interventions that increase floral resources at a landscape scale and throughout the season have positive effects on wild pollinators in agricultural landscapes.


Subject(s)
Bees/physiology , Conservation of Natural Resources/methods , Ecosystem , Agriculture , Animals , Bees/classification , Feeding Behavior , Female , Hibernation , Male , Pollination , Seasons , Survival Analysis
12.
PLoS One ; 12(3): e0174433, 2017.
Article in English | MEDLINE | ID: mdl-28328937

ABSTRACT

Appropriate large-scale citizen-science data present important new opportunities for biodiversity modelling, due in part to the wide spatial coverage of information. Recently proposed occupancy modelling approaches naturally incorporate random effects in order to account for annual variation in the composition of sites surveyed. In turn this leads to Bayesian analysis and model fitting, which are typically extremely time consuming. Motivated by presence-only records of occurrence from the UK Butterflies for the New Millennium data base, we present an alternative approach, in which site variation is described in a standard way through logistic regression on relevant environmental covariates. This allows efficient occupancy model-fitting using classical inference, which is easily achieved using standard computers. This is especially important when models need to be fitted each year, typically for many different species, as with British butterflies for example. Using both real and simulated data we demonstrate that the two approaches, with and without random effects, can result in similar conclusions regarding trends. There are many advantages to classical model-fitting, including the ability to compare a range of alternative models, identify appropriate covariates and assess model fit, using standard tools of maximum likelihood. In addition, modelling in terms of covariates provides opportunities for understanding the ecological processes that are in operation. We show that there is even greater potential; the classical approach allows us to construct regional indices simply, which indicate how changes in occupancy typically vary over a species' range. In addition we are also able to construct dynamic occupancy maps, which provide a novel, modern tool for examining temporal changes in species distribution. These new developments may be applied to a wide range of taxa, and are valuable at a time of climate change. They also have the potential to motivate citizen scientists.


Subject(s)
Butterflies/physiology , Animals , Bayes Theorem , Biodiversity , Climate Change , Ecology , Ecosystem , Models, Biological , Population Dynamics , Time Factors
13.
J Agric Biol Environ Stat ; 22(2): 140-160, 2017.
Article in English | MEDLINE | ID: mdl-32103881

ABSTRACT

Integrated population models (IPMs) combine data on different aspects of demography with time-series of population abundance. IPMs are becoming increasingly popular in the study of wildlife populations, but their application has largely been restricted to the analysis of single species. However, species exist within communities: sympatric species are exposed to the same abiotic environment, which may generate synchrony in the fluctuations of their demographic parameters over time. Given that in many environments conditions are changing rapidly, assessing whether species show similar demographic and population responses is fundamental to quantifying interspecific differences in environmental sensitivity and highlighting ecological interactions at risk of disruption. In this paper, we combine statistical approaches to study populations, integrating data along two different dimensions: across species (using a recently proposed framework to quantify multi-species synchrony in demography) and within each species (using IPMs with demographic and abundance data). We analyse data from three seabird species breeding at a nationally important long-term monitoring site. We combine demographic datasets with island-wide population counts to construct the first multi-species Integrated Population Model to consider synchrony. Our extension of the IPM concept allows the simultaneous estimation of demographic parameters, adult abundance and multi-species synchrony in survival and productivity, within a robust statistical framework. The approach is readily applicable to other taxa and habitats. Supplementary materials accompanying this paper appear on-line. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary materials for this article are available at 10.1007/s13253-017-0279-4.

14.
Cell Mol Life Sci ; 73(18): 3521-33, 2016 09.
Article in English | MEDLINE | ID: mdl-27147466

ABSTRACT

Post-translational modifications (PTMs) are key molecular events that modify proteins after their synthesis and modulate their ultimate functional properties by affecting their stability, localisation, interaction potential or activity. These chemical changes expand the size of the proteome adding diversity to the molecular pathways governing the biological outcome of cells. PTMs are, thus, crucial in regulating a variety of cellular processes such as apoptosis, proliferation and differentiation and have been shown to be instrumental during embryonic development. In addition, alterations in protein PTMs have been implicated in the pathogenesis of many human diseases, including deafness. In this review, we summarize the recent progress made in understanding the roles of PTMs during cochlear development, with particular emphasis on the enzymes driving protein phosphorylation, acetylation, methylation, glycosylation, ubiquitination and SUMOylation. We also discuss how these enzymes may contribute to hearing impairment and deafness.


Subject(s)
Deafness/pathology , Hearing/physiology , Animals , Cochlea/growth & development , Cochlea/metabolism , Deafness/metabolism , Histones/metabolism , Humans , Presbycusis/metabolism , Presbycusis/pathology , Protein Processing, Post-Translational
15.
Biometrics ; 72(4): 1305-1314, 2016 12.
Article in English | MEDLINE | ID: mdl-27003561

ABSTRACT

At a time of climate change and major loss of biodiversity, it is important to have efficient tools for monitoring populations. In this context, animal abundance indices play an important rôle. In producing indices for invertebrates, it is important to account for variation in counts within seasons. Two new methods for describing seasonal variation in invertebrate counts have recently been proposed; one is nonparametric, using generalized additive models, and the other is parametric, based on stopover models. We present a novel generalized abundance index which encompasses both parametric and nonparametric approaches. It is extremely efficient to compute this index due to the use of concentrated likelihood techniques. This has particular relevance for the analysis of data from long-term extensive monitoring schemes with records for many species and sites, for which existing modeling techniques can be prohibitively time consuming. Performance of the index is demonstrated by several applications to UK Butterfly Monitoring Scheme data. We demonstrate the potential for new insights into both phenology and spatial variation in seasonal patterns from parametric modeling and the incorporation of covariate dependence, which is relevant for both monitoring and conservation. Associated R code is available on the journal website.


Subject(s)
Invertebrates , Models, Statistical , Seasons , Animals , Butterflies , Conservation of Natural Resources , Ecological Parameter Monitoring , Population Density
16.
Biol Cell ; 107(2): 41-60, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25412697

ABSTRACT

BACKGROUND INFORMATION: The vertebrate basic helix-loop-helix transcription factor Atoh1 is essential for maturation and survival of mechanosensory hair cells of the inner ear, neurogenesis, differentiation of the intestine, homeostasis of the colon and is implicated in cancer progression. Given that mutations in Atoh1 are detected in malignant tumours, study of functionally different Atoh1 alleles and homologues might yield useful avenues for investigation. The predicted sequence of chicken Atoh1 (cAtoh1) has large regions of dissimilarity to that of mammalian Atoh1 homologues. We hypothesise that cAtoh1 might have intrinsic functional differences to mammalian Atoh1. RESULTS: In this study, we cloned and sequenced the full open reading frame of cAtoh1. In overexpression experiments, we show that this sequence is sufficient to generate a cAtoh1 protein capable of inducing hair cell markers when expressed in nonsensory regions of the developing inner ear, and that morpholino-mediated knock-down using a section of the sequence 5' to the start codon inhibits differentiation of hair cells in the chicken basilar papilla. Furthermore, we compare the behaviour of cAtoh1 and human Atoh1 (hAtoh1) in embryonic mouse cochlear explants, showing that cAtoh1 is a potent inducer of hair cell differentiation and that it can overcome Sox2-mediated repression of hair cell differentiation more effectively than hAtoh1. CONCLUSIONS: cAtoh1 is both necessary and sufficient for avian mechanosensory hair cell differentiation. The non-conserved regions of the cAtoh1 coding region have functional consequences on its behaviour.


Subject(s)
Avian Proteins/genetics , Avian Proteins/metabolism , Chickens/genetics , Amino Acid Sequence , Animals , Avian Proteins/chemistry , Base Sequence , Biomarkers/metabolism , Cell Differentiation , Cloning, Molecular , Cochlea/metabolism , Gene Knockdown Techniques , HEK293 Cells , Hair Cells, Auditory, Inner/cytology , Hair Cells, Auditory, Inner/metabolism , Humans , Labyrinth Supporting Cells/metabolism , Mammals/metabolism , Mice , Molecular Sequence Data , Molecular Weight , SOXB1 Transcription Factors/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
17.
Dev Dyn ; 244(2): 168-80, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25370455

ABSTRACT

BACKGROUND: Inner ear morphogenesis is tightly regulated by the temporally and spatially coordinated action of signaling ligands and their receptors. Ligand-receptor interactions are influenced by heparan sulfate proteoglycans (HSPGs), cell surface molecules that consist of glycosaminoglycan chains bound to a protein core. Diversity in the sulfation pattern within glycosaminoglycan chains creates binding sites for numerous cell signaling factors, whose activities and distribution are modified by their association with HSPGs. RESULTS: Here we describe the expression patterns of two extracellular 6-O-endosulfatases, Sulf1 and Sulf2, whose activity modifies the 6-O-sulfation pattern of HSPGs. We use in situ hybridization to determine the temporal and spatial distribution of transcripts during the development of the chick and mouse inner ear. We also use immunocytochemistry to determine the cellular localization of Sulf1 and Sulf2 within the sensory epithelia. Furthermore, we analyze the organ of Corti in Sulf1/Sulf2 double knockout mice and describe an increase in the number of mechanosensory hair cells. CONCLUSIONS: Our results suggest that the tuning of intracellular signaling, mediated by Sulf activity, plays an important role in the development of the inner ear.


Subject(s)
Avian Proteins/biosynthesis , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Enzymologic/physiology , Organ of Corti/embryology , Sulfatases/biosynthesis , Sulfotransferases/biosynthesis , Animals , Chick Embryo , Mice , Organ of Corti/cytology , Signal Transduction/physiology
18.
Methods ; 66(3): 447-53, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-23792918

ABSTRACT

The inner ear transduces the mechanical stimuli that are associated with sound and balance perception. Missteps during its formation often result in deafness, and thus understanding otic development has a profound clinical relevance. The intricate complexity of the inner ear is derived from a simple epithelial sheet during embryogenesis. Study of this process in vitro has provided insight into the mechanisms of otic induction, patterning and differentiation. This article details methods for the culture of otic placode, otocyst, and basilar papilla, providing a toolkit for the investigation of multiple facets of otic organogenesis, for regeneration studies and for setting up small molecule screens to identify possible therapeutic targets.


Subject(s)
Chickens , Ear, Inner/embryology , Tissue Culture Techniques , Animals , Chick Embryo
19.
Ecology ; 94(1): 3-10, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23600234

ABSTRACT

With environmental conditions changing rapidly, there is a need to move beyond single-species models and consider how communities respond to environmental drivers. We present a modeling approach that allows estimation of multispecies synchrony in productivity, or its components, and the contribution of environmental covariates as synchronizing and desynchronizing agents. We apply the model to long-term breeding success data for five seabird species at a North Atlantic colony. Our Bayesian analysis reveals varying degrees of synchrony in overall productivity, with a common signal indicating a significant decline in productivity between 1986 and 2009. Productivity in seabirds reflects conditions in the marine ecosystem so the estimated synchronous component is a useful indicator of local marine environment health. For the two species for which we have most data, the environmental contribution to overall productivity synchrony is driven principally by effects operating at the chick stage rather than during incubation. Our results emphasize the importance of studying together species that coexist in a community. The framework, which accommodates interspecific clutch-size variation, is readily applicable to any species assemblage in any ecosystem where long-term productivity data are available.


Subject(s)
Charadriiformes/physiology , Reproduction/physiology , Animals , Bayes Theorem , Biomarkers , Population Dynamics , Scotland , Species Specificity , Time Factors
20.
PLoS One ; 7(10): e46387, 2012.
Article in English | MEDLINE | ID: mdl-23071561

ABSTRACT

During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner.


Subject(s)
Ear, Inner/embryology , SOXB2 Transcription Factors/biosynthesis , Animals , Chick Embryo , Ear, Inner/cytology , Ear, Inner/metabolism , Electroporation , Genes, Reporter , Immunohistochemistry , In Situ Hybridization , SOXB2 Transcription Factors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...