Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
eNeuro ; 10(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37963651

Subject(s)
Brain , Head , Humans
2.
PLoS One ; 17(7): e0268351, 2022.
Article in English | MEDLINE | ID: mdl-35802625

ABSTRACT

This study demonstrates the functional importance of the Surround context relayed laterally in V1 by the horizontal connectivity, in controlling the latency and the gain of the cortical response to the feedforward visual drive. We report here four main findings: 1) a centripetal apparent motion sequence results in a shortening of the spiking latency of V1 cells, when the orientation of the local inducer and the global motion axis are both co-aligned with the RF orientation preference; 2) this contextual effects grows with visual flow speed, peaking at 150-250°/s when it matches the propagation speed of horizontal connectivity (0.15-0.25 mm/ms); 3) For this speed range, the axial sensitivity of V1 cells is tilted by 90° to become co-aligned with the orientation preference axis; 4) the strength of modulation by the surround context correlates with the spatiotemporal coherence of the apparent motion flow. Our results suggest an internally-generated binding process, linking local (orientation /position) and global (motion/direction) features as early as V1. This long-range diffusion process constitutes a plausible substrate in V1 of the human psychophysical bias in speed estimation for collinear motion. Since it is demonstrated in the anesthetized cat, this novel form of contextual control of the cortical gain and phase is a built-in property in V1, whose expression does not require behavioral attention and top-down control from higher cortical areas. We propose that horizontal connectivity participates in the propagation of an internal "prediction" wave, shaped by visual experience, which links contour co-alignment and global axial motion at an apparent speed in the range of saccade-like eye movements.


Subject(s)
Form Perception , Motion Perception , Visual Cortex , Attention , Form Perception/physiology , Motion , Motion Perception/physiology , Photic Stimulation , Visual Cortex/physiology , Visual Pathways/physiology
3.
J Neurosci ; 41(37): 7797-7812, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34321313

ABSTRACT

The spatial organization and dynamic interactions between excitatory and inhibitory synaptic inputs that define the receptive field (RF) of simple cells in the cat primary visual cortex (V1) still raise the following paradoxical issues: (1) stimulation of simple cells in V1 with drifting gratings supports a wiring schema of spatially segregated sets of excitatory and inhibitory inputs activated in an opponent way by stimulus contrast polarity and (2) in contrast, intracellular studies using flashed bars suggest that although ON and OFF excitatory inputs are indeed segregated, inhibitory inputs span the entire RF regardless of input contrast polarity. Here, we propose a biologically detailed computational model of simple cells embedded in a V1-like network that resolves this seeming contradiction. We varied parametrically the RF-correlation-based bias for excitatory and inhibitory synapses and found that a moderate bias of excitatory neurons to synapse onto other neurons with correlated receptive fields and a weaker bias of inhibitory neurons to synapse onto other neurons with anticorrelated receptive fields can explain the conductance input, the postsynaptic membrane potential, and the spike train dynamics under both stimulation paradigms. This computational study shows that the same structural model can reproduce the functional diversity of visual processing observed during different visual contexts.SIGNIFICANCE STATEMENT Identifying generic connectivity motives in cortical circuitry encoding for specific functions is crucial for understanding the computations implemented in the cortex. Indirect evidence points to correlation-based biases in the connectivity pattern in V1 of higher mammals, whereby excitatory and inhibitory neurons preferentially synapse onto neurons respectively with correlated and anticorrelated receptive fields. A recent intracellular study questions this push-pull hypothesis, failing to find spatial anticorrelation patterns between excitation and inhibition across the receptive field. We present here a spiking model of V1 that integrates relevant anatomic and physiological constraints and shows that a more versatile motif of correlation-based connectivity with selectively tuned excitation and broadened inhibition is sufficient to account for the diversity of functional descriptions obtained for different classes of stimuli.


Subject(s)
Models, Neurological , Neural Inhibition/physiology , Neurons/physiology , Synaptic Transmission/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Action Potentials/physiology , Animals , Cats , Synapses/physiology , Visual Perception/physiology
4.
Sci Rep ; 11(1): 10783, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031442

ABSTRACT

The neural encoding of visual features in primary visual cortex (V1) is well understood, with strong correlates to low-level perception, making V1 a strong candidate for vision restoration through neuroprosthetics. However, the functional relevance of neural dynamics evoked through external stimulation directly imposed at the cortical level is poorly understood. Furthermore, protocols for designing cortical stimulation patterns that would induce a naturalistic perception of the encoded stimuli have not yet been established. Here, we demonstrate a proof of concept by solving these issues through a computational model, combining (1) a large-scale spiking neural network model of cat V1 and (2) a virtual prosthetic system transcoding the visual input into tailored light-stimulation patterns which drive in situ the optogenetically modified cortical tissue. Using such virtual experiments, we design a protocol for translating simple Fourier contrasted stimuli (gratings) into activation patterns of the optogenetic matrix stimulator. We then quantify the relationship between spatial configuration of the imposed light pattern and the induced cortical activity. Our simulations in the absence of visual drive (simulated blindness) show that optogenetic stimulation with a spatial resolution as low as 100 [Formula: see text]m, and light intensity as weak as [Formula: see text] photons/s/cm[Formula: see text] is sufficient to evoke activity patterns in V1 close to those evoked by normal vision.


Subject(s)
Optogenetics/methods , Photic Stimulation/methods , Visual Cortex/physiology , Animals , Eye, Artificial , Humans , Models, Theoretical , Proof of Concept Study , Visual Pathways , Visual Perception
5.
eNeuro ; 8(2)2021.
Article in English | MEDLINE | ID: mdl-33931493

ABSTRACT

The recent trend toward an industrialization of brain exploration and the technological prowess of artificial intelligence algorithms and high-performance computing has caught the imagination of the public. These impressive advances are fueling an uncontrolled societal hype, the more amplified, the more "Blue Sky" the claim is. Will we ever be able to simulate a brain in silico? Will "it" (the digital avatar) be conscious? The Blue Brain Project (BBP) and the European flagship the Human Brain Project (HBP) have surfed on this wave for the past 10 years. Their already significant lifetimes now offer new case studies for neuroscience sociology and epistemology, as the projects mature. Their distinctive "Blue Sky" flavor has been a key feature in securing unprecedented funding (more than one billion Euros) mostly through supranational institutions. The longitudinal analysis of these ventures provides clues to how the neuromyth they propagate sells science, in a scientific world based on an economy of promises.


Subject(s)
Artificial Intelligence , Neurosciences , Algorithms , Brain , Computer Simulation , Humans
6.
Science ; 358(6362): 470-477, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29074766

ABSTRACT

New technologies in neuroscience generate reams of data at an exponentially increasing rate, spurring the design of very-large-scale data-mining initiatives. Several supranational ventures are contemplating the possibility of achieving, within the next decade(s), full simulation of the human brain.


Subject(s)
Brain , Data Mining/methods , Neurosciences/trends , Humans
7.
PLoS Comput Biol ; 13(5): e1005543, 2017 05.
Article in English | MEDLINE | ID: mdl-28542191

ABSTRACT

Brain activity displays a large repertoire of dynamics across the sleep-wake cycle and even during anesthesia. It was suggested that criticality could serve as a unifying principle underlying the diversity of dynamics. This view has been supported by the observation of spontaneous bursts of cortical activity with scale-invariant sizes and durations, known as neuronal avalanches, in recordings of mesoscopic cortical signals. However, the existence of neuronal avalanches in spiking activity has been equivocal with studies reporting both its presence and absence. Here, we show that signs of criticality in spiking activity can change between synchronized and desynchronized cortical states. We analyzed the spontaneous activity in the primary visual cortex of the anesthetized cat and the awake monkey, and found that neuronal avalanches and thermodynamic indicators of criticality strongly depend on collective synchrony among neurons, LFP fluctuations, and behavioral state. We found that synchronized states are associated to criticality, large dynamical repertoire and prolonged epochs of eye closure, while desynchronized states are associated to sub-criticality, reduced dynamical repertoire, and eyes open conditions. Our results show that criticality in cortical dynamics is not stationary, but fluctuates during anesthesia and between different vigilance states.


Subject(s)
Action Potentials/physiology , Cerebral Cortex/physiology , Models, Neurological , Wakefulness/physiology , Animals , Cats , Computational Biology , Haplorhini , Neurons/physiology
8.
Front Neural Circuits ; 10: 37, 2016.
Article in English | MEDLINE | ID: mdl-27242445

ABSTRACT

Neurons in the primary visual cortex are known for responding vigorously but with high variability to classical stimuli such as drifting bars or gratings. By contrast, natural scenes are encoded more efficiently by sparse and temporal precise spiking responses. We used a conductance-based model of the visual system in higher mammals to investigate how two specific features of the thalamo-cortical pathway, namely push-pull receptive field organization and fast synaptic depression, can contribute to this contextual reshaping of V1 responses. By comparing cortical dynamics evoked respectively by natural vs. artificial stimuli in a comprehensive parametric space analysis, we demonstrate that the reliability and sparseness of the spiking responses during natural vision is not a mere consequence of the increased bandwidth in the sensory input spectrum. Rather, it results from the combined impacts of fast synaptic depression and push-pull inhibition, the later acting for natural scenes as a form of "effective" feed-forward inhibition as demonstrated in other sensory systems. Thus, the combination of feedforward-like inhibition with fast thalamo-cortical synaptic depression by simple cells receiving a direct structured input from thalamus composes a generic computational mechanism for generating a sparse and reliable encoding of natural sensory events.


Subject(s)
Cortical Excitability/physiology , Neural Inhibition/physiology , Thalamus/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Visual Perception/physiology , Animals , Cats
9.
J Neurosci ; 36(14): 3925-42, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27053201

ABSTRACT

The computational role of primary visual cortex (V1) in low-level perception remains largely debated. A dominant view assumes the prevalence of higher cortical areas and top-down processes in binding information across the visual field. Here, we investigated the role of long-distance intracortical connections in form and motion processing by measuring, with intracellular recordings, their synaptic impact on neurons in area 17 (V1) of the anesthetized cat. By systematically mapping synaptic responses to stimuli presented in the nonspiking surround of V1 receptive fields, we provide the first quantitative characterization of the lateral functional connectivity kernel of V1 neurons. Our results revealed at the population level two structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. First, subthreshold responses to oriented stimuli flashed in isolation in the nonspiking surround exhibited a geometric organization around the preferred orientation axis mirroring the psychophysical "association field" for collinear contour perception. Second, apparent motion stimuli, for which horizontal and feedforward synaptic inputs summed in-phase, evoked dominantly facilitatory nonlinear interactions, specifically during centripetal collinear activation along the preferred orientation axis, at saccadic-like speeds. This spatiotemporal integration property, which could constitute the neural correlate of a human perceptual bias in speed detection, suggests that local (orientation) and global (motion) information is already linked within V1. We propose the existence of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy are transiently updated and reshaped as a function of changes in the retinal flow statistics imposed during natural oculomotor exploration. SIGNIFICANCE STATEMENT: The computational role of primary visual cortex in low-level perception remains debated. The expression of this "pop-out" perception is often assumed to require attention-related processes, such as top-down feedback from higher cortical areas. Using intracellular techniques in the anesthetized cat and novel analysis methods, we reveal unexpected structural-functional biases in the synaptic integration and dynamic association properties of V1 neurons. These structural-functional biases provide a substrate, within V1, for contour detection and, more unexpectedly, global motion flow sensitivity at saccadic speed, even in the absence of attentional processes. We argue for the concept of a "dynamic association field" in V1 neurons, whose spatial extent and anisotropy changes with retinal flow statistics, and more generally for a renewed focus on intracortical computation.


Subject(s)
Synapses/physiology , Visual Cortex/physiology , Visual Perception/physiology , Algorithms , Anesthesia , Animals , Anisotropy , Brain Mapping , Cats , Form Perception/physiology , Motion Perception/physiology , Neurons/physiology , Nonlinear Dynamics , Photic Stimulation , Reaction Time/physiology , Retina/physiology , Visual Cortex/cytology , Visual Fields/physiology , Visual Pathways/physiology
10.
J Neurosci Methods ; 257: 76-96, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26434707

ABSTRACT

BACKGROUND: Voltage-sensitive dye optical imaging is a promising technique for studying in vivo neural assemblies dynamics where functional clustering can be visualized in the imaging plane. Its practical potential is however limited by many artifacts. NEW METHOD: We present a novel method, that we call "SMCS" (Spatially Structured Sparse Morphological Component Separation), to separate the relevant biological signal from noise and artifacts. It extends Generalized Linear Models (GLM) by using a set of convex non-smooth regularization priors adapted to the morphology of the sources and artifacts to capture. RESULTS: We make use of first order proximal splitting algorithms to solve the corresponding large scale optimization problem. We also propose an automatic parameters selection procedure based on statistical risk estimation methods. COMPARISON WITH EXISTING METHODS: We compare this method with blank subtraction and GLM methods on both synthetic and real data. It shows encouraging perspectives for the observation of complex cortical dynamics. CONCLUSIONS: This work shows how recent advances in source separation can be integrated into a biophysical model of VSDOI. Going beyond GLM methods is important to capture transient cortical events such as propagating waves.


Subject(s)
Image Processing, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Voltage-Sensitive Dye Imaging/methods , Algorithms , Animals , Artifacts , Cats , Evoked Potentials , Linear Models , Mice , Models, Neurological , Neurons/physiology , Somatosensory Cortex/physiology , Touch Perception/physiology , Vibrissae/physiology , Visual Cortex/physiology , Visual Perception/physiology
11.
Neuron ; 88(1): 110-26, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26447576

ABSTRACT

Low-level perception results from neural-based computations, which build a multimodal skeleton of unconscious or self-generated inferences on our environment. This review identifies bottleneck issues concerning the role of early primary sensory cortical areas, mostly in rodent and higher mammals (cats and non-human primates), where perception substrates can be searched at multiple scales of neural integration. We discuss the limitation of purely bottom-up approaches for providing realistic models of early sensory processing and the need for identification of fast adaptive processes, operating within the time of a percept. Future progresses will depend on the careful use of comparative neuroscience (guiding the choices of experimental models and species adapted to the questions under study), on the definition of agreed-upon benchmarks for sensory stimulation, on the simultaneous acquisition of neural data at multiple spatio-temporal scales, and on the in vivo identification of key generic integration and plasticity algorithms validated experimentally and in simulations.


Subject(s)
Cerebral Cortex/physiology , Cognition/physiology , Perception/physiology , Animals , Humans , Neural Pathways/physiology , Sensation/physiology
13.
PLoS Comput Biol ; 10(8): e1003811, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25165853

ABSTRACT

The cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create local oscillations and establish their coherence between distant cortical areas. Here, we propose a novel mechanism which explains how synchronous spiking activity propagates across weakly connected brain areas supported by oscillations. In our model, oscillatory activity unleashes network resonance that amplifies feeble synchronous signals and promotes their propagation along weak connections ("communication through resonance"). The emergence of coherent oscillations is a natural consequence of synchronous activity propagation and therefore the assumption of different mechanisms that create oscillations and provide coherence is not necessary. Moreover, the phase-locking of oscillations is a side effect of communication rather than its requirement. Finally, we show how the state of ongoing activity could affect the communication through resonance and propose that modulations of the ongoing activity state could influence information processing in distributed cortical networks.


Subject(s)
Action Potentials/physiology , Models, Neurological , Nerve Net/physiology , Synaptic Transmission/physiology , Computational Biology , Feedback , Neurons/physiology
14.
Front Neurosci ; 8: 206, 2014.
Article in English | MEDLINE | ID: mdl-25120417

ABSTRACT

The design of efficient neuroprosthetic devices has become a major challenge for the long-term goal of restoring autonomy to motor-impaired patients. One approach for brain control of actuators consists in decoding the activity pattern obtained by simultaneously recording large neuronal ensembles in order to predict in real-time the subject's intention, and move the prosthesis accordingly. An alternative way is to assign the output of one or a few neurons by operant conditioning to control the prosthesis with rules defined by the experimenter, and rely on the functional adaptation of these neurons during learning to reach the desired behavioral outcome. Here, several motor cortex neurons were recorded simultaneously in head-fixed awake rats and were conditioned, one at a time, to modulate their firing rate up and down in order to control the speed and direction of a one-dimensional actuator carrying a water bottle. The goal was to maintain the bottle in front of the rat's mouth, allowing it to drink. After learning, all conditioned neurons modulated their firing rate, effectively controlling the bottle position so that the drinking time was increased relative to chance. The mean firing rate averaged over all bottle trajectories depended non-linearly on position, so that the mouth position operated as an attractor. Some modifications of mean firing rate were observed in the surrounding neurons, but to a lesser extent. Notably, the conditioned neuron reacted faster and led to a better control than surrounding neurons, as calculated by using the activity of those neurons to generate simulated bottle trajectories. Our study demonstrates the feasibility, even in the rodent, of using a motor cortex neuron to control a prosthesis in real-time bidirectionally. The learning process includes modifications of the activity of neighboring cortical neurons, while the conditioned neuron selectively leads the activity patterns associated with the prosthesis control.

15.
J Neurosci ; 34(16): 5515-28, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24741042

ABSTRACT

In the primary visual cortex (V1), Simple and Complex receptive fields (RFs) are usually characterized on the basis of the linearity of the cell spiking response to stimuli of opposite contrast. Whether or not this classification reflects a functional dichotomy in the synaptic inputs to Simple and Complex cells is still an open issue. Here we combined intracellular membrane potential recordings in cat V1 with 2D dense noise stimulation to decompose the Simple-like and Complex-like components of the subthreshold RF into a parallel set of functionally distinct subunits. Results show that both Simple and Complex RFs exhibit a remarkable diversity of excitatory and inhibitory Complex-like contributions, which differ in orientation and spatial frequency selectivity from the linear RF, even in layer 4 and layer 6 Simple cells. We further show that the diversity of Complex-like contributions recovered at the subthreshold level is expressed in the cell spiking output. These results demonstrate that the Simple or Complex nature of V1 RFs does not rely on the diversity of Complex-like components received by the cell from its synaptic afferents but on the imbalance between the weights of the Simple-like and Complex-like synaptic contributions.


Subject(s)
Neurons/physiology , Orientation/physiology , Synapses/physiology , Visual Cortex/cytology , Visual Fields/physiology , Action Potentials/physiology , Animals , Brain Mapping , Cats , Female , Lysine/analogs & derivatives , Lysine/metabolism , Male , Models, Neurological , Neural Inhibition/physiology , Photic Stimulation , Predictive Value of Tests , Sensory Thresholds
16.
J Neurosci ; 33(19): 8308-20, 2013 May 08.
Article in English | MEDLINE | ID: mdl-23658171

ABSTRACT

Operant control of a prosthesis by neuronal cortical activity is one of the successful strategies for implementing brain-machine interfaces (BMI), by which the subject learns to exert a volitional control of goal-directed movements. However, it remains unknown if the induced brain circuit reorganization affects preferentially the conditioned neurons whose activity controlled the BMI actuator during training. Here, multiple extracellular single-units were recorded simultaneously in the motor cortex of head-fixed behaving rats. The firing rate of a single neuron was used to control the position of a one-dimensional actuator. Each time the firing rate crossed a predefined threshold, a water bottle moved toward the rat, until the cumulative displacement of the bottle allowed the animal to drink. After a learning period, most (88%) conditioned neurons raised their activity during the trials, such that the time to reward decreased across sessions: the conditioned neuron fired strongly, reliably and swiftly after trial onset, although no explicit instruction in the learning rule imposed a fast neuronal response. Moreover, the conditioned neuron fired significantly earlier and more strongly than nonconditioned neighboring neurons. During the first training sessions, an increase in firing rate variability was seen only for the highly conditionable neurons. This variability then decreased while the conditioning effect increased. These findings suggest that modifications during training target preferentially the neuron chosen to control the BMI, which acts then as a "master" neuron, leading in time the reconfiguration of activity in the local cortical network.


Subject(s)
Brain-Computer Interfaces , Conditioning, Operant/physiology , Motor Cortex/cytology , Neurons/physiology , Action Potentials/physiology , Animals , Cell Survival , Male , Nerve Net/physiology , Rats , Rats, Wistar , Reaction Time/physiology , Reward , Statistics, Nonparametric
17.
J Neurosci ; 33(15): 6388-400, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23575837

ABSTRACT

The sensitivity and rate of neural coding along the early visual pathways adapt to changes in contrast of the retinal image caused by external motion or self-generated eye movements. To identify the functional mechanisms of fast and slow contrast adaptation at the level of the visual cortex, we randomly varied, over both short and long timescales, the contrast of optimal sinusoidal gratings flashed in the receptive field of simple cells. We found that fast contrast-dependent suppression lagged excitation by ~11 ms and controlled the spike's temporal precision. During slow adaptation to low contrasts, the gain and latency of excitation increased whereas suppression became less visible, resulting in more sensitive but slower and more variable responses. We conclude that delayed suppression controls the response dynamics during both fast and slow contrast adaptation. More generally, we propose that sensory adaptation trades neuronal sensitivity for processing speed by changing the balance between excitation and delayed inhibition.


Subject(s)
Adaptation, Physiological/physiology , Contrast Sensitivity/physiology , Neural Inhibition/physiology , Neurons/physiology , Visual Cortex/physiology , Action Potentials/physiology , Animals , Cats , Female , Male , Models, Neurological , Photic Stimulation/methods , Time Factors , Visual Fields/physiology , Visual Pathways
18.
Front Neural Circuits ; 7: 206, 2013.
Article in English | MEDLINE | ID: mdl-24409121

ABSTRACT

Synaptic noise is thought to be a limiting factor for computational efficiency in the brain. In visual cortex (V1), ongoing activity is present in vivo, and spiking responses to simple stimuli are highly unreliable across trials. Stimulus statistics used to plot receptive fields, however, are quite different from those experienced during natural visuomotor exploration. We recorded V1 neurons intracellularly in the anaesthetized and paralyzed cat and compared their spiking and synaptic responses to full field natural images animated by simulated eye-movements to those evoked by simpler (grating) or higher dimensionality statistics (dense noise). In most cells, natural scene animation was the only condition where high temporal precision (in the 10-20 ms range) was maintained during sparse and reliable activity. At the subthreshold level, irregular but highly reproducible membrane potential dynamics were observed, even during long (several 100 ms) "spike-less" periods. We showed that both the spatial structure of natural scenes and the temporal dynamics of eye-movements increase the signal-to-noise ratio by a non-linear amplification of the signal combined with a reduction of the subthreshold contextual noise. These data support the view that the sparsening and the time precision of the neural code in V1 may depend primarily on three factors: (1) broadband input spectrum: the bandwidth must be rich enough for recruiting optimally the diversity of spatial and time constants during recurrent processing; (2) tight temporal interplay of excitation and inhibition: conductance measurements demonstrate that natural scene statistics narrow selectively the duration of the spiking opportunity window during which the balance between excitation and inhibition changes transiently and reversibly; (3) signal energy in the lower frequency band: a minimal level of power is needed below 10 Hz to reach consistently the spiking threshold, a situation rarely reached with visual dense noise.


Subject(s)
Action Potentials/physiology , Eye Movements/physiology , Neurons/physiology , Visual Cortex/physiology , Visual Perception/physiology , Animals , Cats , Photic Stimulation , Signal-To-Noise Ratio , Visual Fields/physiology
19.
PLoS Comput Biol ; 9(12): e1003401, 2013.
Article in English | MEDLINE | ID: mdl-24385892

ABSTRACT

The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional loop remains largely ignored. Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. The synaptic bombardment of cortical origin was mimicked through the injection of a stochastic mixture of excitatory and inhibitory conductances, resulting in a gradable correlation level of afferent activity shared by thalamic cells. The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i) the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii) the statistics of the corticothalamic synaptic bombardment and iii) the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. This suggests that the transfer efficiency of relay cells could be selectively amplified when they become simultaneously desynchronized by the cortical feedback. When applied to the intact brain, this network regulation mechanism could direct an attentional focus to specific thalamic subassemblies and select the appropriate input lines to the cortex according to the descending influence of cortically-defined "priors".


Subject(s)
Cerebral Cortex/physiology , Stochastic Processes , Thalamus/physiology , Action Potentials , Humans , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...