Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
ChemSusChem ; : e202400953, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864365

ABSTRACT

This manuscript reports for the first time a heterogenous catalytic route to monoglycerides (MAGs) from microalgal oil. Microalgae is an important biomass source with high-value applications, such as food ingredients with essential fatty acids. To date, the glycerolysis of microalgae has only been investigated for a microbial oil (Schizochytrium sp.) using enzyme catalysis. However, the use of enzymes on a large scale is currently economically impeditive and requires highly selective lipases. In this study, metal oxides were screened and the reaction conditions optimized for rapeseed oil. The optimized conditions were then used to investigate the production of MAGs from Scenedesmus sp. microalga. The most promising catalyst was found to be MgO/KOH, which gave a 44% yield. Comparing two reaction systems (low temperature 70°C/atmospheric pressure and high temperature at 200°C/20 bar), it was found that the latter has a superior performance. Due to the stability of the product in air, the presence of an inert atmosphere is essential to achieve high yields.

2.
Bioresour Technol ; 342: 125949, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34592614

ABSTRACT

Large-scale microalgae cultivation is often associated with high costs, and nutrients account for a significant part. However, the use of cheaper nutrients, carbon, and water sources could reduce expenses. This study aims to produce Chlorella vulgaris and Desmodesmus sp. cultivated in sugarcane biorefinery residues bagasse and vinasse. A biofertilizer from bagasse biochar was produced and characterized, and a pre-treatment by filtration was performed on vinasse. The effects of varying growth conditions (antibiotic, vinasse, and biofertilizer concentrations; air flowrate; pH; light intensity; and photoperiod) were discussed based on the results of a Plackett-Burman design. The highest cell density was achieved by Desmodesmus sp. (46·106 cells mL-1 from an initial 6.5·106 cells mL-1) using vinasse (20%) and biofertilizer (1 g L-1). Specific metabolite accumulation was also observed. Under stress conditions, 21.3% lipids and 51.0% carbohydrates were obtained for two different cultivations. Using 1 g L-1 of biofertilizer, biomass composition had 74.8% proteins.


Subject(s)
Chlorella vulgaris , Microalgae , Saccharum , Biomass , Lipids
3.
Braz. j. microbiol ; 40(4): 747-756, Oct.-Dec. 2009. graf, tab
Article in English | LILACS | ID: lil-528156

ABSTRACT

Gamma-linolenic acid (GLA, 18:3, cis- 6,9,12-octadecatrienoic acid), an important compound in n-6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 percent of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7 percent of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC.


Subject(s)
gamma-Linolenic Acid/analysis , gamma-Linolenic Acid/isolation & purification , Borago , Fermentation , Geotrichum/enzymology , Geotrichum/isolation & purification , In Vitro Techniques , Lipase/analysis , Lipase/isolation & purification , Catalyzer , Enzyme Activation , Hydrolysis , Methods , Methods
4.
Braz J Microbiol ; 40(4): 747-56, 2009 Oct.
Article in English | MEDLINE | ID: mdl-24031421

ABSTRACT

Gamma linolenic acid (GLA, 18:3, cis- 6,9,12- octadecatrienoic acid), an important compound in n- 6 eicosanoid family biosynthesis, occurs in the lipids of a few plant and microbial sources. This study focused on the screening of microbial strains with suitable lipase activity for enrichment of GLA by selective hydrolysis of the borage oil (21.6 % of GLA/total fatty acids). Firstly, 352 microrganisms were tested for their lipolytic capacity using screening techniques on agar plates containing borage oil, strains were then selected and screened for their activity (U/mg) using both submerged fermentation (SmF) and solid state fermentation (SSF). The rate of hydrolysis and the selective preference of these hydrolytic enzymes towards fatty acids, with a special focus on enrichment of GLA were studied and compared with those obtained by two commercially-available lipases. Only one of the lipases tested during this study displayed selectivity, discriminating the GLA during the hydrolysis reaction. Using the enzymatic extract from Geotrichum candidum as a biocatalyst of the reaction, it was possible to obtain a percentage of 41.7% of GLA in acylglycerols fraction when the borage oil was treated in a fixed-bed reactor for 24 hours at 30ºC.

SELECTION OF CITATIONS
SEARCH DETAIL
...