Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(15): 4777-4787, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37209160

ABSTRACT

The oncolytic rodent protoparvovirus H-1PV has been successfully used in phase I/II clinical trials to treat recurrent glioblastoma multiforme and pancreatic cancer. The present work focuses on the stability and environmental safety of the H-1PV drug product from production up to its use in patients. We identified hold-steps in manufacturing for up to 3 months and showed 7-years stability for the optimal product formulation. Stress testing via UV, temperature, and pH also determined that the drug product is stable. De- and rehydration for lyophilization simulation are possible without infectious virus loss. Furthermore, we prove in-use stability for 4 days at room temperature and show no virus adsorption to injection devices, guaranteeing the correct administration dose. Iodixanol in the formulation, resulting in high viscosity, protects H-1PV against UV and some disinfectants. Nonetheless, H-1PV is depleted with rapid heat deactivation, autoclavation, and nanofiltration. Assessment of chemical disinfectants that are currently recommended by the Robert Koch-Institute demonstrated that ethanol-based hand disinfectants are not effective; however, aldehyde-based disinfectants for surfaces and instruments demonstrate sufficient H-1PV deactivation in aqueous formulations by 4 to 6 log10. With these results, we could establish a specific hygiene plan for all involved facilities from manufacturing to patient application. Overall, using 48% Iodixanol in Visipaque/Ringer as a drug formulation stabilizes H-1PV infectivity over years and protects against virus loss from short-term UV, low pH, and temperature exposure. KEY POINTS: • Optimal formulation of drug product protects the H-1PV protoparvovirus against UV, temperatures up to 50 °C, and low pH (> 1.25), stabilizing the virus during manufacturing, storage, transport, and application. • H-1PV is stable during in-use and does not adsorb to injection devices during patient administration. • Hygiene plan for H-1PV with physicochemical methods has been established.


Subject(s)
Glioblastoma , H-1 parvovirus , Oncolytic Virotherapy , Oncolytic Viruses , Pancreatic Neoplasms , Humans , Oncolytic Viruses/physiology , Oncolytic Virotherapy/methods , H-1 parvovirus/physiology , Pancreatic Neoplasms/therapy
2.
Appl Microbiol Biotechnol ; 105(24): 9113-9124, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34782922

ABSTRACT

The oncolytic virus H-1PV is a promising candidate for various cancer treatments. Therefore, production process needs to be optimized and scaled up for future market release. Currently, the virus is produced with minimum essential medium in 10-layer CellSTACK® chambers with limited scalability, requiring a minimum seeding density of 7.9E3 cells/cm2. Production also requires a 5% fetal bovine serum (FBS) supplementation and has a virus yield up to 3.1E7 plaque-forming units (PFU)/cm2. Using the animal-free cell culture medium VP-SFM™ and a new feeding strategy, we demonstrate a yield boost by a mean of 0.3 log while reducing seeding density to 5.0E3 cells/cm2 and cutting FBS supplementation by up to 40% during the production process. Additionally, FBS is completely removed at the time of harvest. Eleven commercial micro- and macrocarriers were screened regarding cell growth, bead-to-bead transfer capability, and virus yield. We present a proof-of-concept study for producing H-1PV on a large scale with the microcarrier Cytodex® 1 in suspension and a macrocarrier for a fixed-bed iCELLis® bioreactor. A carrier-based H-1PV production process combined with an optimized cell culture medium and feeding strategy can facilitate future upscaling to industrial-scale production. KEY POINTS: • Virus yield increase and FBS-free harvest after switching to cell culture medium VP-SFM™. • We screened carriers for cell growth, bead-to-bead transfer capability, and H-1PV yield. • High virus yield is achieved with Cytodex® 1 and macrocarrier for iCellis® in Erlenmeyer flasks.


Subject(s)
H-1 parvovirus , Oncolytic Viruses , Bioreactors , Cell Culture Techniques , Culture Media , Oncolytic Viruses/genetics
3.
Clin Cancer Res ; 27(20): 5546-5556, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34426438

ABSTRACT

PURPOSE: To investigate the safety, clinical efficacy, virus pharmacokinetics, shedding, and immune response after administration of an oncolytic parvovirus (H-1PV, ParvOryx) to patients with metastatic pancreatic ductal adenocarcinoma (PDAC) refractory to first-line therapy. PATIENTS AND METHODS: This is a noncontrolled, single-arm, open-label, dose-escalating, single-center clinical trial. Seven patients with PDAC and at least one liver metastasis were included. ParvOryx was administered intravenously on 4 consecutive days and as an intralesional injection, 6 to 13 days thereafter. Altogether, three escalating dose levels were investigated. In addition, gemcitabine treatment was initiated on day 28. RESULTS: ParvOryx showed excellent tolerability with no dose-limiting toxicities. One patient had a confirmed partial response and one patient revealed an unconfirmed partial response according to RECIST criteria. Both patients showed remarkably long surivial of 326 and 555 days, respectively. Investigation of pharmacokinetics and virus shedding revealed dose dependency with no excretion of active virus particles in saliva or urine and very limited excretion in feces. H-1PV nucleic acids were detected in tumor samples of four patients. All patients showed T-cell responses to viral proteins. An interesting immunologic pattern developed in tumor tissues and in blood of both patients with partial response suggesting immune activation after administration of ParvOryx. CONCLUSIONS: The trial met all primary objectives, revealed no environmental risks, and indicated favorable immune modulation after administration of ParvOryx. It can be considered a good basis for further systematic clinical development alone or in combination with immunomodulatory compounds.


Subject(s)
Adenocarcinoma/secondary , Adenocarcinoma/therapy , Carcinoma, Pancreatic Ductal/secondary , Carcinoma, Pancreatic Ductal/therapy , H-1 parvovirus , Immune System/immunology , Oncolytic Virotherapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Aged , Humans , Middle Aged , Oncolytic Virotherapy/adverse effects
4.
Mol Ther ; 25(12): 2620-2634, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-28967558

ABSTRACT

Oncolytic virotherapy may be a means of improving the dismal prognosis of malignant brain tumors. The rat H-1 parvovirus (H-1PV) suppresses tumors in preclinical glioma models, through both direct oncolysis and stimulation of anticancer immune responses. This was the basis of ParvOryx01, the first phase I/IIa clinical trial of an oncolytic parvovirus in recurrent glioblastoma patients. H-1PV (escalating dose) was administered via intratumoral or intravenous injection. Tumors were resected 9 days after treatment, and virus was re-administered around the resection cavity. Primary endpoints were safety and tolerability, virus distribution, and maximum tolerated dose (MTD). Progression-free and overall survival and levels of viral and immunological markers in the tumor and peripheral blood were also investigated. H-1PV treatment was safe and well tolerated, and no MTD was reached. The virus could cross the blood-brain/tumor barrier and spread widely through the tumor. It showed favorable pharmacokinetics, induced antibody formation in a dose-dependent manner, and triggered specific T cell responses. Markers of virus replication, microglia/macrophage activation, and cytotoxic T cell infiltration were detected in infected tumors, suggesting that H-1PV may trigger an immunogenic stimulus. Median survival was extended in comparison with recent meta-analyses. Altogether, ParvOryx01 results provide an impetus for further H-1PV clinical development.


Subject(s)
Genetic Therapy , Genetic Vectors/genetics , Glioblastoma/genetics , Glioblastoma/therapy , H-1 parvovirus/genetics , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Female , Gene Expression , Genetic Therapy/adverse effects , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Molecular Targeted Therapy , Oncolytic Virotherapy/adverse effects , Oncolytic Virotherapy/methods , Radiotherapy , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Transgenes , Treatment Outcome
5.
Appl Microbiol Biotechnol ; 101(8): 3143-3152, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28091791

ABSTRACT

The rodent protoparvovirus H-1PV, with its oncolytic and oncosuppressive properties, is a promising anticancer agent currently under testing in clinical trials. This explains the current demand for a scalable, good manufacturing practice-compatible virus purification process yielding high-grade pure infectious particles and overcoming the limitations of the current system based on density gradient centrifugation. We describe here a scalable process offering high purity and recovery. Taking advantage of the isoelectric point difference between full and empty particles, it eliminates most empty particles. Full particles have a significantly higher cationic charge than empty ones, with an isoelectric point of 5.8-6.2 versus 6.3 (as determined by isoelectric focusing and chromatofocusing). Thanks to this difference, infectious full particles can be separated from empty particles and most protein impurities by Convective interaction media® diethylaminoethyl (DEAE) anion exchange chromatography: applying unpurified H-1PV to the column in 0.15 M NaCl leaves, the former on the column and the latter in the flow through. The full particles are then recovered by elution with 0.25 M NaCl. The whole large-scale purification process involves filtration, single-step DEAE anion exchange chromatography, buffer exchange by cross-flow filtration, and final formulation in Visipaque/Ringer solution. It results in 98% contaminating protein removal and 96% empty particle elimination. The final infectious particle concentration reaches 3.5E10 plaque forming units (PFU)/ml, with a specific activity of 6.8E11 PFU/mg protein. Overall recovery is over 40%. The newly established method is suitable for use in commercial production.


Subject(s)
Capsid/chemistry , Chromatography, Ion Exchange/methods , H-1 parvovirus/chemistry , H-1 parvovirus/isolation & purification , Isoelectric Focusing/methods , Animals , Capsid/virology , Cations , Filtration/methods , H-1 parvovirus/ultrastructure , Isoelectric Point , Microscopy, Electron , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...