Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(25): 30187-30197, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34129331

ABSTRACT

Developing high-performance Fe-based ammonia catalysts through simple and cost-efficient methods has received an increased level of attention. Herein, we report for the first time, the synthesis of two-dimensional (2D) FeOOH nanoflakes encapsulated by mesoporous SiO2 (mSiO2) via a simple solution-based method for ammonia synthesis. Due to the sticking of the mSiO2 coating layers and the limited spaces in between, the Fe after reduction retains the 2D morphology, showing high resistance against the sintering in the harsh Haber-Bosch process. Compared to supported Fe particles dispersed on mSiO2 spheres, the coated catalyst shows a significantly improved catalytic activity by 50% at 425 °C. Thermal desorption spectroscopy (TDS) reveals the existence of a higher density of reactive sites for N2 activation in the 2D Fe catalyst, which is possibly coupled to a larger density of surface defect sites (kinks, steps, point defects) that are generally considered as active centers in ammonia synthesis. Besides the structural impact of the coating on the 2D Fe, the electronic one is elucidated by partially substituting Si with Al in the coating, confirmed by 29Si and 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR). An increased apparent activation energy (Ea) of the Al-containing catalyst evidences an influence on the nature of the active site. The herein-developed stable 2D Fe nanostructures can serve as an example of a 2D material applied in catalysis, offering the chance of a rational catalyst design based on a stepwise introduction of various promoters, in the coating and on the metal, maintaining the spatial control of the active centers.

2.
Chemistry ; 26(50): 11571-11583, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32428318

ABSTRACT

A systematic variation of the SBA-15 synthesis conditions and their impact on the structural and chemical characteristics are reported. An incremental alteration of the hydrothermal aging temperature and time was used to induce changes of the highly ordered SBA-15 structure. Any effects on the total surface area, mesopores size, micropore contributions, and pore connectivity are amplified by a combined incremental increase of the NH4 F concentration. Based on changes of the unit-cell parameter as a function of the mesopore size, and a feature in the low-angle XRD pattern, useful descriptors for the disorder of the corresponding SBA-15 are identified. An additional analysis of the Brunauer-Emmett-Teller (BET) surface area and pore size distributions enables investigations of the structural integrity of the material. This systematic approach allows the identification of coherencies between the evolution of physical SBA-15 properties. The obtained correlations of the surface and structural characteristics allow the discrimination between highly ordered 2D SBA-15, disordered 3D SBA-15, and highly nonuniform silica fractions with mainly amorphous character. The fluoride-induced disintegration of the silica structure under hydrothermal conditions was also verified by TEM. A direct influence of the structural adaption on the chemical properties of the surface was demonstrated by isopropanol conversion and H/D exchange monitored by FTIR analysis as sensitive probes for acid and redox active surface sites.

3.
Phys Chem Chem Phys ; 22(20): 11273-11285, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32309844

ABSTRACT

Polycrystalline ZnO is a material often used in heterogeneous catalysis. Its properties can be altered by the addition of dopants. We used gaseous fluorine (F2(g)) as direct way to incorporate fluoride in ZnO as anionic dopants. Here, the consequences of this treatment on the structural and electronic properties, as well as on the acidic/basic sites of the surface, are investigated. It is shown that the amount of F incorporation into the structure can be controlled by the synthesis parameters (t, T, p). While the surface of ZnO was altered as shown by, e.g., IR spectroscopy, XPS, and STEM/EDX measurements, the F2 treatment also influenced the electronic properties (optical band gap, conductivity) of ZnO. Furthermore, the Lewis acidity/basicity of the surface was affected which is evidenced by using, e.g., different probe molecules (CO2, NH3). In situ investigations of the fluorination process offer valuable insights on the fluorination process itself.

4.
Angew Chem Int Ed Engl ; 58(37): 12935-12939, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31169940

ABSTRACT

The influence of a mild difluorine treatment on Cu/ZnO precatalysts for methanol synthesis was investigated. It led to the incorporation of 1.2…1.3±0.1 wt % fluoride into the material. Fluorination considerably increased the amount of ZnOx related defect sites on the catalysts and significantly increased the space-time yields. Although the apparent activation energy EA,app for methanol formation from CO2 and H2 was almost unchanged, the EA,app for the reverse water-gas shift (rWGS) reaction increased considerably. Overall, fluorination led to a significant gain in methanol selectivity and productivity. Apparently, also the quantity of active sites increased.

5.
J Am Chem Soc ; 141(6): 2451-2461, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30640467

ABSTRACT

We report on the activation of CO2 on Ni single-atom catalysts. These catalysts were synthesized using a solid solution approach by controlled substitution of 1-10 atom % of Mg2+ by Ni2+ inside the MgO structure. The Ni atoms are preferentially located on the surface of the MgO and, as predicted by hybrid-functional calculations, favor low-coordinated sites. The isolated Ni atoms are active for CO2 conversion through the reverse water-gas shift (rWGS) but are unable to conduct its further hydrogenation to CH4 (or MeOH), for which Ni clusters are needed. The CO formation rates correlate linearly with the concentration of Ni on the surface evidenced by XPS and microcalorimetry. The calculations show that the substitution of Mg atoms by Ni atoms on the surface of the oxide structure reduces the strength of the CO2 binding at low-coordinated sites and also promotes H2 dissociation. Astonishingly, the single-atom catalysts stayed stable over 100 h on stream, after which no clusters or particle formation could be detected. Upon catalysis, a surface carbonate adsorbate-layer was formed, of which the decompositions appear to be directly linked to the aggregation of Ni. This study on atomically dispersed Ni species brings new fundamental understanding of Ni active sites for reactions involving CO2 and clearly evidence the limits of single-atom catalysis for complex reactions.

6.
Chemistry ; 24(56): 15080-15088, 2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30088684

ABSTRACT

The existence of a limited solid-solution series in the Cu/Zn binary metal oxalate system is reported. Coprecipitation was applied for the preparation of a comprehensive set of mixed Cu/Zn oxalates. Rietveld refinement of the XRD data revealed the formation of mixed-metal oxalate single phases at the compositional peripheries. Accordingly, the isomorphous substitution of ZnII into CuII oxalate takes place at Zn contents of ≤6.6 and ≥79.1 atom %. Zn incorporation leads to a pronounced unit-cell contraction accompanied by Vegard-type trends for the lattice parameters. Morphologically, both solid solutions show close resemblance to the corresponding pure single-metal oxalates, and thus distinct differences are identified (SEM). The successful formation of solid solutions was further evidenced by thermal analysis. The decomposition temperature of the oxalate was taken as an approximation for ZnII incorporation into the CuII oxalate structure. Single decomposition events are observed within the stated compositional boundaries and shift to higher temperature with increasing Zn content, whereas multiple events are present near Cu/Zn parity. Moreover, these findings are supported by IR and Raman spectroscopic investigations. This study on the Cu/Zn mixed-metal oxalate system sheds light on the important prerequisites for solid-solution formation and identifies the structural limitations that predefine its application as catalyst precursor.

7.
J Phys Chem B ; 122(2): 780-787, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29039938

ABSTRACT

The electrodeposition nature of copper on a gold electrode in a 4.8 pH CuSO4 solution was inquired using X-ray absorption spectroscopy, electrochemical quartz crystal microbalance, and thermal desorption spectroscopy techniques. Our results point out that the electrodeposition of copper prompts the formation of stable oxi-hydroxide species with a formal oxidation state Cu+ without the evidence of metallic copper formation (Cu0). Moreover, the subsequent anodic polarization of Cu2Oaq yields the formation of CuO, in the formal oxidation state Cu2+, which is dissolved at higher anodic potential. It was found that the dissolution process needs less charge than that required for the electrodeposition indicating a nonreversible process most likely due to concomitant water splitting and formation of protons during the electrodeposition.

8.
Angew Chem Int Ed Engl ; 55(41): 12708-12, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27607344

ABSTRACT

Long-term stability of catalysts is an important factor in the chemical industry. This factor is often underestimated in academic testing methods, which may lead to a time gap in the field of catalytic research. The deactivation behavior of an industrially relevant Cu/ZnO/Al2 O3 catalyst for the synthesis of methanol is reported over a period of 148 days time-on-stream (TOS). The process was investigated by a combination of quasi in situ and ex situ analysis techniques. The results show that ZnO is the most dynamic species in the catalyst, whereas only slight changes can be observed in the Cu nanoparticles. Thus, the deactivation of this catalyst is driven by the changes in the ZnO moieties. Our findings indicate that methanol synthesis is an interfacially mediated process between Cu and ZnO.

9.
ACS Appl Mater Interfaces ; 6(3): 1576-82, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24392784

ABSTRACT

Catalytically synthesized methanol from H2 and CO2 using porous Cu/ZnO aggregates is a promising, carbon neutral, and renewable alternative to replace fossil fuel based transport fuels. However, the absence of surface-engineered model systems to understand and improve the industrial Cu/ZnO catalyst poses a big technological gap in efforts to increase industrial methanol conversion efficiency. In this work, we report a novel process for the fabrication of patterned, vertically aligned high aspect ratio 1D nanostructures on Si that can be used as an engineered model catalyst. The proposed strategy employs near-field phase shift lithography (NF-PSL), deep reactive ion etching (DRIE), and atomic layer deposition (ALD) to pattern, etch, and coat Si wafers to produce high aspect ratio 1D nanostructures. Using this method, we produced a model system consisting of high aspect ratio Cu-decorated ZnO nanotubes (NTs) to investigate the morphological effects of ZnO catalyst support in comparison to the planar Cu/ZnO catalyst in terms of the catalytic reactions. The engineered catalysts performed 70 times better in activating CO2 than the industrial catalyst. In light of the obtained results, several important points are highlighted, and recommendations are made to achieve higher catalytic performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...