Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 160(15)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38629604

ABSTRACT

Borazine is a well-established precursor molecule for the growth of hexagonal boron nitride (h-BN) via chemical vapor deposition on metal substrates. To understand the formation of the h-BN/Rh(111) moiré from borazine on a molecular level, we investigated the low-temperature adsorption and thermally induced on-surface reaction of borazine on Rh(111) in situ using synchrotron radiation-based high-resolution x-ray photoelectron spectroscopy (XPS), temperature-programmed XPS, and near-edge x-ray absorption fine structure measurements. We find that borazine adsorbs mainly as an intact molecule and have identified a flat-lying adsorption geometry. Borazine multilayers are observed to desorb below 200 K. Starting at about 300 K, dehydrogenation of the remaining borazine and borazine fragments takes place, and disordered boron nitride starts to grow. Above 600 K, the formation of the h-BN sets in. Finally, at 1100 K, the conversion to h-BN is complete. The h-BN formed by deposition and post-annealing was compared to the h-BN grown by an established procedure, proving the successful preparation of the desired two-dimensional material.

2.
Nanotechnology ; 35(14)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38048605

ABSTRACT

The adsorption, reaction and thermal stability of bromine on Rh(111)-supported hexagonal boron nitride (h-BN) and graphene were investigated. Synchrotron radiation-based high-resolution x-ray photoelectron spectroscopy (XPS) and temperature-programmed XPS allowed us to follow the adsorption process and the thermal evolutionin situon the molecular scale. Onh-BN/Rh(111), bromine adsorbs exclusively in the pores of the nanomesh while we observe no such selectivity for graphene/Rh(111). Upon heating, bromine undergoes an on-surface reaction onh-BN to form polybromides (170-240 K), which subsequently decompose to bromide (240-640 K). The high thermal stability of Br/h-BN/Rh(111) suggests strong/covalent bonding. Bromine on graphene/Rh(111), on the other hand, reveals no distinct reactivity except for intercalation of small amounts of bromine underneath the 2D layer at high temperatures. In both cases, adsorption is reversible upon heating. Our experiments are supported by a comprehensive theoretical study. DFT calculations were used to describe the nature of theh-BN nanomesh and the graphene moiré in detail and to study the adsorption energetics and substrate interaction of bromine. In addition, the adsorption of bromine onh-BN/Rh(111) was simulated by molecular dynamics using a machine-learning force field.

3.
Chemphyschem ; 24(22): e202300510, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37609858

ABSTRACT

This study addresses a fundamental question in surface science: the adsorption of halogens on metal surfaces. Using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (XPS), temperature-programmed XPS, low-energy electron diffraction (LEED) and density functional theory (DFT) calculations, we investigated the adsorption and thermal stability of bromine on Rh(111) in detail. The adsorption of elemental bromine on Rh(111) at 170 K was followed in situ by XPS in the Br 3d region, revealing two individual, coverage-dependent species, which we assign to fcc hollow- and bridge-bound atomic bromine. In addition, we find a significant shift in binding energy upon increasing coverage due to adsorbate-adsorbate interactions. Subsequent heating shows a high thermal stability of bromine on Rh(111) up to above 1000 K, indicating strong covalent bonding. To complement the XPS data, LEED was used to study the long-range order of bromine on Rh(111): we observe a (√3×√3)R30° structure for low coverages (≤0.33 ML) and a star-shaped compression structure for higher coverages (0.33-0.43 ML). Combining LEED and DFT calculations, we were able to visualize bromine adsorption on Rh(111) in real space for varying coverages.

4.
J Chem Phys ; 159(7)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37602805

ABSTRACT

The transition to renewable energy sources comes along with the search for new energy storage solutions. Molecular solar thermal systems directly harvest and store solar energy in a chemical manner. By a suitable molecular design, a higher overall efficiency can be achieved. In this study, we investigate the surface chemistry of oxa-norbornadiene/quadricyclane derivatives on a Pt(111) surface. Specifically, we focus on the energy storage and release properties of molecules that are substituted with ester moieties of different sizes. For our model catalytic approach, synchrotron radiation-based x-ray photoelectron spectroscopy measurements were conducted in ultra-high vacuum (UHV) and correlated with the catalytic behavior in the liquid phase monitored by photochemical infrared reflection absorption spectroscopy. The differences in their spectral appearance enabled us to unambiguously differentiate the energy-lean and energy-rich isomers and decomposition products. Next to qualitative information on the adsorption motifs, temperature-programmed experiments allowed for the observation of thermally induced reactions and the deduction of the related reaction pathways. We analyzed the selectivity of the cycloreversion reaction from the energy-rich quadricyclane derivative to its energy-lean norbornadiene isomer and competing processes, such as desorption and decomposition. For the 2,3-bis(methylester)-substitution, the cycloreversion reaction was found to occur between 310 and 340 K, while the thermal stability limit of the compounds was determined to be 380 K. The larger 2,3-bis(benzylester) derivatives have a lower apparent adsorption energy and a decomposition onset already at 135 K. In the liquid phase (in acetonitrile), we determined the rate constants for the cycloreversion reaction on Pt(111) to k = 5.3 × 10-4 s-1 for the 2,3-bis(methylester)-substitution and k = 6.3 × 10-4 s-1 for the 2,3-bis(benzylester) derivative. The selectivities were of >99% and 98% for the two molecules, respectively. The difference in the catalytic behavior of Pt(111) for both derivatives is less pronounced in the liquid phase than in UHV, which we attribute to the passivation of the Pt(111) surface by carbonaceous species under ambient conditions.

5.
Nanoscale ; 15(12): 5665-5670, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36896752

ABSTRACT

In this work, we compare for the first time the stability of [n]cycloparaphenylene ([n]CPP)-based host-guest complexes with Li+@C60 and C60 in the gas and the solution phase. Our gas-phase experiments reveal a significant increase in stability for the complexes featuring [9-12]CPP with Li+@C60. This increased interaction strength is also observed in solution. Isothermal titration calorimetry shows for the formation of [10]CPP⊃Li+@C60 a two orders of magnitude larger association constant than that for the C60 analog. Additionally, an increased binding entropy is observed. This study contributes to a better understanding of host-guest complexes between [n]CPPs and endohedral metallofullerenes at a molecular level, which is the prerequisite for future applications.

6.
Chemistry ; 29(25): e202203759, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36840687

ABSTRACT

Novel energy-storage solutions are necessary for the transition from fossil to renewable energy sources. Auspicious candidates are so-called molecular solar thermal (MOST) systems. In our study, we investigate the surface chemistry of a derivatized norbornadiene/quadricyclane molecule pair. By using suitable push-pull substituents, a bathochromic shift of the absorption onset is achieved, allowing a greater overlap with the solar spectrum. Specifically, the adsorption and thermally induced reactions of 2-carbethoxy-3-phenyl-norbornadiene/quadricyclane are assessed on Pt(111) and Ni(111) as model catalyst surfaces by synchrotron radiation-based X-ray photoelectron spectroscopy (XPS). Comparison of the respective XP spectra enables the distinction of the energy-rich molecule from its energy-lean counterpart and allows qualitative information on the adsorption motifs to be derived. Monitoring the quantitative cycloreversion between 140 and 230 K spectroscopically demonstrates the release of the stored energy to be successfully triggered on Pt(111). Heating to above 300 K leads to fragmentation of the molecular framework. On Ni(111), no conversion of the energy-rich compound takes place. The individual decomposition pathways of the two isomers begin at 160 and 180 K, respectively. Pronounced desorption of almost the entire surface coverage only occurs for the energy-lean molecule on Ni(111) above 280 K; this suggests weakly bound species. The correlation between adsorption motif and desorption behavior is important for applications of MOST systems in heterogeneously catalyzed processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...