Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Planta Med ; 71(1): 40-7, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15678372

ABSTRACT

An important group of antimalarial drugs consists of the endoperoxide sesquiterpene lactone artemisinin and its derivatives. Only little is known about the biosynthesis of artemisinin in Artemisia annua L., particularly about the early enzymatic steps between amorpha-4,11-diene and dihydroartemisinic acid. Analyses of the terpenoids from A. annua leaves and gland secretory cells revealed the presence of the oxygenated amorpha-4,11-diene derivatives artemisinic alcohol, dihydroartemisinic alcohol, artemisinic aldehyde, dihydroartemisinic aldehyde and dihydroartemisinic acid. We also demonstrated the presence of a number of biosynthetic enzymes such as the amorpha-4,11-diene synthase and the--so far unknown--amorpha-4,11-diene hydroxylase as well as artemisinic alcohol and dihydroartemisinic aldehyde dehydrogenase activities in both leaves and glandular trichomes. From these results, we hypothesise that the early steps in artemisinin biosynthesis involve amorpha-4,11-diene hydroxylation to artemisinic alcohol, followed by oxidation to artemisinic aldehyde, reduction of the C11-C13 double bond to dihydroartemisinic aldehyde and oxidation to dihydroartemisinic acid.


Subject(s)
Antimalarials/metabolism , Artemisia annua/metabolism , Artemisinins/metabolism , Phytotherapy , Artemisia annua/enzymology , Gas Chromatography-Mass Spectrometry , Humans , Plant Leaves/enzymology , Plant Leaves/metabolism
2.
J Chromatogr A ; 1009(1-2): 155-69, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-13677656

ABSTRACT

Matrix metalloproteinases (MMPs) are zinc dependent metalloproteases characterized by the ability to cleave extracellular matrix and many other extracellular proteins. MMP activity is tightly regulated but disturbances in this regulation can contribute to various disease processes characterized by a progressive destruction of the extracellular matrix. The ability to profile classes of enzymes based on functionally related activities would greatly facilitate research about the involvement of MMPs in physiological and/or pathological states. Here we describe the characterization of an affinity sorbent using an immobilized reversible inhibitor as a stationary phase for the activity-based enrichment of MMPs from biological samples. With a ligand density of 9.8 mM and binding constant of 58 micromol/l towards MMP-12, the capturing power of the affinity sorbent was strong enough to extract MMP-12 spiked into serum with high selectivity from relatively large sample volumes. Experiments with endogenous inhibitors revealed that MMP-12 extraction is strictly activity-dependent, offering powerful means to monitor MMP activities in relation to physiological and/or pathological events by using affinity extraction as a first step in an MMP profiling method.


Subject(s)
Affinity Labels , Metalloendopeptidases/isolation & purification , Protease Inhibitors/metabolism , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Humans , Kinetics , Matrix Metalloproteinase 12 , Metalloendopeptidases/antagonists & inhibitors , Metalloendopeptidases/metabolism , Protein Binding
3.
FEBS Lett ; 462(1-2): 66-70, 1999 Nov 26.
Article in English | MEDLINE | ID: mdl-10580093

ABSTRACT

Pyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has been characterized using EPR-monitored redox titrations. Two different W signals were found. W(1)(5+) is an intermediate species in the catalytic cycle, with the midpoint potentials E(m)(W(6+/5+))=-507 mV and E(m)(W(5+/4+))=-491 mV. W(2)(5+) represents an inactivated species with E(m)(W(6+/5+))=-329 mV. The cubane cluster exhibits both S=3/2 and S=1/2 signals with the same midpoint potential: E(m)([4Fe-4S](2+/1+))=-335 mV. The S=1/2 EPR signal is unusual with all g values below 2.0. The titration results combined with catalytic voltammetry data are consistent with electron transfer from glyceraldehyde 3-phosphate first to the tungsten center, then to the cubane cluster and finally to the ferredoxin.


Subject(s)
Alcohol Oxidoreductases/metabolism , Pyrococcus furiosus/enzymology , Alcohol Oxidoreductases/chemistry , Catalysis , Electron Spin Resonance Spectroscopy , Electron Transport , Glyceraldehyde 3-Phosphate/metabolism , Oxidation-Reduction , Pyrococcus furiosus/metabolism , Titrimetry , Tungsten/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...