Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(26): 10756-10764, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952275

ABSTRACT

This work introduces a new element-selective gas chromatography detector for the accurate quantification of traces of volatile oxygen-containing compounds in complex samples without the need for specific standards. The key to this approach is the use of oxygen highly enriched in 18O as the oxidizing gas in a combustion unit (800 °C) that allows us to directly and unambiguously detect the natural oxygen present in the GC-separated compounds through its incorporation into the volatile species formed after their combustion and their subsequent degradation to 16O in the ion source. The unspecific signal due to the low 16O abundance in the oxidizing gas could be compensated by measuring the m/z 12 that comes as well from the CO2 degradation. Equimolarity was proved with several O-containing compounds with different sizes and functionalities. A detection limit of 28 pg of injected O was achieved, which is the lowest ever reported for any GC detector, which barely worsened to 55 and 214 pg of O when the oxygenate partially or completely coeluted with a very abundant matrix compound. Validation was attained by the analysis of a SRM to obtain accurate (99-103%) and precise (1-4% RSD) results. Robustness was tested after spiking a hydrotreated diesel with 10 O-compounds at the ppm level, which could be discriminated from the matrix crowd and quantified (mean recovery of 102 ± 9%) with a single generic standard. Finally, it was also successfully applied to easily spot and quantify the 33 oxygenates naturally present in a complex wood bio-oil sample.

2.
Anal Chem ; 95(31): 11761-11768, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37490591

ABSTRACT

Here, we show the potential and applicability of the novel GC-combustion-MS approach as a nitrogen-selective GC detector. Operating requirements to achieve reproducible and compound-independent formation of volatile NO species as a selective N-signal during the combustion step are described. Specifically, high temperatures (≥1000 °C) and post-column O2 flows (0.4 mL min-1 of 0.3% O2 in He) turned out to be necessary when using a vertical oven without makeup flow (prototype #1). In contrast, the use of a horizontal oven with 1.7 mL min-1 He as an additional makeup flow (prototype #2) required milder conditions (850 °C and 0.2 mL min-1). A detection limit of 0.02 pg of N injected was achieved, which is by far the lowest ever reported for any GC detector. Equimolarity, linearity, and peak shape were also adequate. Validation of the approach was performed by the analysis of a certified reference material obtaining accurate (2% error) and precise (2% RSD) results. Robustness was tested with the analysis of two complex samples with different matrices (diesel and biomass pyrolysis oil) and N concentration levels. Total N determined after the integration of the whole chromatograms (524 ± 22 and 11,140 ± 330 µg N g-1, respectively) was in good agreement with the reference values (497 ± 10 and 11,000 ± 1200 µg N g-1, respectively). In contrast, GC-NCD results were lower for the diesel sample (394 ± 42 µg N g-1). Quantitative values for the individual and families of N species identified in the real samples by parallel GC-MS and additional GC × GC-MS analyses were also obtained using a single generic internal standard.

3.
Chem Commun (Camb) ; 56(19): 2905-2908, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32037422

ABSTRACT

We present a novel and single detection approach that enables sensitive, accurate and compound-independent quantification of N, S and H in the individual compounds present in complex samples. Integration of the whole chromatographic profile gives the total content of the elements. Simultaneous universal detection is also achieved using the C profile.

4.
Anal Chem ; 91(11): 7019-7024, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31083916

ABSTRACT

Quantitative characterization of sulfur-containing petroleum derivatives is mainly limited by the large number of potential targets present and the matrix effects suffered due to the high-carbon-containing matrices. Herein we describe the instrumental modifications required in a commercial GC-ICP-MS/MS instrument, and their corresponding optimization, for turning it into a compound-independent quantitative technique for both total and speciation sulfur analysis in gasolines. Additionally, carbon-derived matrix effects were made negligible for direct and fast total S analysis, making the use of relatively complex isotope-dilution strategies not necessary anymore. An absolute detection limit of 0.3 pg of S was achieved, which is, to the best of our knowledge, more than 1 order of magnitude below the ones reported for other sulfur GC selective detectors. The precision was below 3% RSD. Total analysis was performed by flow-injection analysis through a transfer line and external calibration, whereas speciation analysis was carried out by chromatographic separation and internal standardization. In both cases, simple generic standards were used, which enabled us to get rid of specific S-containing standards, which were sometimes not available or unstable. The proposed method was successfully applied to total and speciation sulfur analysis of a commercial gasoline sample and validated with a certified-reference-material (ERM-EF213) gasoline. The approach has proved to be simple, fast, robust, and convenient for implementation in routine laboratories, as demonstrated by the successive analyses of 50 gasoline samples in 3 h without any instrumental drift.

5.
Anal Chem ; 90(7): 4677-4685, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29495656

ABSTRACT

Dissolved inorganic carbon (DIC) is one of the most important parameters to be measured in seawaters for climate change studies. Its quantitative assessment requires analytical methodologies with overall uncertainties around 0.05% RSD for clear evaluation of temporal trends. Herein, two alternative isotope dilution mass spectrometry (IDMS) methodologies (online and species-specific) using an isotope ratio mass spectrometer (IRMS) and two calculation procedures for each methodology have been compared. As a result, a new method for the determination of DIC in seawaters, based on species-specific IDMS with isotope pattern deconvolution calculation, was developed and validated. A 13C-enriched bicarbonate tracer was added to the sample and, after equilibration and acidification, the isotope abundances at CO2 masses 44, 45, and 46 were measured on an IRMS instrument. Notably, early spiking allows correcting for evaporations and/or adsorptions during sample preparation and storage and could be carried out immediately after sampling. Full uncertainty budgets were calculated taking into account all the factors involved in the determination (initial weights, concentration and isotope abundances of standards, and final IRMS measurements). The average DIC value obtained for CRM seawater agreed very well with the certified value. Propagated precision obtained ranged from 0.035 to 0.050% RSD for individual sample triplicates. Reproducibility, assessed by three independent experiments carried out in different working days, was excellent as well (-0.01% and 0.057%, error and full combined uncertainty, respectively). Additionally, the approach proposed improves on established methods by simplicity, higher throughput (15 min per sample), and lower volume requirements (10 mL).

6.
Anal Chem ; 89(11): 5719-5724, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28441010

ABSTRACT

Although analysis of metals and metalloids, such as arsenic, is widely spread in many different fields, their analysis in gas and liquefied gas samples is still a challenge. A new GC-ICP-MS set up has been developed for their simultaneous total and speciation analysis in gas and liquefied gas samples without the need of a preconcentration step. An arsine in nitrogen standard was used for optimization and evaluation of the system. Good linearity and detection limits in the very low ppt level for both total and speciation analyses were found. Liquefied butane pressurized under nitrogen and doped with arsine and a propylene real sample from a cracker plant were analyzed using both external calibration and standard additions methods. The good match between both quantifying approaches demonstrated almost negligible matrix effects, even for the total analysis. Application of the approach to check repartition of volatile elements or species between gas and liquid phases was performed in the real propylene sample. Finally, its potential applicability for the simultaneous total and speciation analysis of other elements, such as Hg, was also proved.

7.
J Chromatogr A ; 1457: 134-43, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27371016

ABSTRACT

GC-FID has been effectively used as a universal quantification technique for volatile organic compounds for a long time. In most cases, the use of the ECN allows for quantification by GC-FID without external calibration using only the response of a single internal standard. In this paper we compare the performance characteristics of GC-FID with those of post-column (13)C Isotope Dilution GC-Combustion-MS for the absolute quantification of organic compounds without the need for individual standards. For this comparison we have selected the quantification of FAMEs in biodiesel. The selection of the right internal standard was critical for GC-FID even when ECN were considered. On the other hand, the nature of the internal standard was not relevant when GC-Combustion-MS was employed. The proposed method was validated with the analysis of the certified reference material SRM 2772 and comparative data was obtained on real biodiesel samples. The analysis of the SRM 2772 biodiesel provided recoveries in the range 100.6-103.5% and 96.4-103.6% for GC-combustion-MS and GC-FID, respectively. The detection limit for GC-combustion-MS was found to be 4.2ng compound/g of injected sample. In conclusion, the quantitative performance of GC-Combustion-MS compared satisfactorily with that of GC-FID constituting a viable alternative for the quantification of organic compounds without the need for individual standards.


Subject(s)
Biofuels/analysis , Fatty Acids/analysis , Volatile Organic Compounds/analysis , Calibration , Chromatography, Gas/methods , Esters , Flame Ionization , Gas Chromatography-Mass Spectrometry/methods , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...