Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(7): 076901, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38427860

ABSTRACT

Orbital current has emerged over the past years as one of the key novel concepts in magnetotransport. Here, we demonstrate that laser pulses can be used to generate large and robust nonrelativistic orbital currents in systems where the inversion symmetry is broken by the orbital Rashba effect. By referring to model and first principles tools, we demonstrate that orbital Rashba effect, accompanied by crystal field splitting, can mediate robust orbital photocurrents without a need for spin-orbit interaction even in metallic systems. We show that such nonrelativistic orbital photocurrents are translated into derivative photocurrents of spin when relativistic effects are taken into account. We thus promote orbital photocurrents as a promising platform for optical generation of currents of angular momentum, and discuss their possible applications.

2.
Phys Rev Lett ; 121(14): 147203, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30339435

ABSTRACT

We measure and analyze the chirality of Dzyaloshinskii-Moriya-interaction (DMI) stabilized spin textures in multilayers of Ta|Co_{20}F_{60}B_{20}|MgO. The effective DMI is measured experimentally using domain wall motion measurements, both in the presence (using spin-orbit torques) and absence of driving currents (using magnetic fields). We observe that the current-induced domain wall motion yields a change in effective DMI magnitude and opposite domain wall chirality when compared to field-induced domain wall motion (without current). We explore this effect, which we refer to as current-induced DMI, by providing possible explanations for its emergence, and explore the possibility of its manifestation in the framework of recent theoretical predictions of DMI modifications due to spin currents.

3.
Science ; 351(6273): 587-90, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26841431

ABSTRACT

Antiferromagnets are hard to control by external magnetic fields because of the alternating directions of magnetic moments on individual atoms and the resulting zero net magnetization. However, relativistic quantum mechanics allows for generating current-induced internal fields whose sign alternates with the periodicity of the antiferromagnetic lattice. Using these fields, which couple strongly to the antiferromagnetic order, we demonstrate room-temperature electrical switching between stable configurations in antiferromagnetic CuMnAs thin-film devices by applied current with magnitudes of order 10(6) ampere per square centimeter. Electrical writing is combined in our solid-state memory with electrical readout and the stored magnetic state is insensitive to and produces no external magnetic field perturbations, which illustrates the unique merits of antiferromagnets for spintronics.

4.
Nat Nanotechnol ; 11(5): 455-8, 2016 05.
Article in English | MEDLINE | ID: mdl-26854566

ABSTRACT

The idea to use not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (10(12) Hz) emission spectroscopy and exploiting the spin-orbit interaction, we demonstrate the optical generation of electric photocurrents in metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.

5.
Phys Rev Lett ; 115(3): 036602, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26230813

ABSTRACT

We carry out density functional theory calculations which demonstrate that the electron dynamics in the Skyrmion phase of Fe-rich Mn_{1-x}Fe_{x}Ge alloys is governed by Berry phase physics. We observe that the magnitude of the Dzyaloshinskii-Moriya interaction directly related to the mixed space-momentum Berry phases, changes sign and magnitude with concentration x in direct correlation with the data of Shibata et al. [Nat. Nanotechnol. 8, 723 (2013)]. The computed anomalous and topological Hall effects in FeGe are also in good agreement with available experiments. We further develop a simple tight-binding model able to explain these findings. Finally, we show that the adiabatic Berry phase picture is violated in the Mn-rich limit of the alloys.

6.
Phys Rev Lett ; 112(18): 186601, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24856709

ABSTRACT

We report an experimental and computational study of the Hall effect in Mn(1-x)Fe(x)Si, as complemented by measurements in Mn(1-x)Co(x)Si, when helimagnetic order is suppressed under substitutional doping. For small x the anomalous Hall effect (AHE) and the topological Hall effect (THE) change sign. Under larger doping the AHE remains small and consistent with the magnetization, while the THE grows by over a factor of 10. Both the sign and the magnitude of the AHE and the THE are in excellent agreement with calculations based on density functional theory. Our study provides the long-sought material-specific microscopic justification that, while the AHE is due to the reciprocal-space Berry curvature, the THE originates in real-space Berry phases.

7.
J Phys Condens Matter ; 26(10): 104202, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24552898

ABSTRACT

Recent experiments on current-induced domain-wall motion in chiral domain walls reveal important contributions both from spin-orbit torques (SOTs) and from the Dzyaloshinskii-Moriya interaction (DMI). We derive a Berry phase expression for the DMI and show that within this Berry phase theory DMI and SOTs are intimately related, in a way formally analogous to the relation between orbital magnetization (OM) and anomalous Hall effect (AHE). We introduce the concept of the twist torque moment, which probes the internal twist of wavepackets in chiral magnets in a similar way as the orbital moment probes the wavepacket's internal self-rotation. We propose to interpret the Berry phase theory of DMI as a theory of spiralization in analogy to the modern theory of OM. We show that the twist torque moment and the spiralization together give rise to a Berry phase governing the response of the SOT to thermal gradients, in analogy to the intrinsic anomalous Nernst effect. The Berry phase theory of DMI is computationally very efficient because it only needs the electronic structure of the collinear magnetic system as input. As an application of the formalism we compute the DMI in Co/Pt(111), O/Co/Pt(111) and Al/Co/Pt(111) magnetic bi- and trilayers and show that the DMI is highly anisotropic in these systems.


Subject(s)
Algorithms , Magnetic Fields , Magnets , Models, Chemical , Spin Labels , Computer Simulation , Rotation , Torque
8.
Nat Nanotechnol ; 8(4): 256-60, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23542903

ABSTRACT

In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.

9.
Phys Rev Lett ; 108(7): 077201, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22401245

ABSTRACT

We analyze the origin of the electrical resistance arising in domain walls of perpendicularly magnetized materials by considering a superposition of anisotropic magnetoresistance and the resistance implied by the magnetization chirality. The domain wall profiles of L1(0)-FePd and L1(0)-FePt are determined by micromagnetic simulations based on which we perform first-principles calculations to quantify electron transport through the core and closure region of the walls. The wall resistance, being twice as high in L1(0)-FePd than in L1(0)-FePt, is found to be clearly dominated in both cases by a high gradient of magnetization rotation, which agrees well with experimental observations.

10.
Phys Rev Lett ; 107(8): 086603, 2011 Aug 19.
Article in English | MEDLINE | ID: mdl-21929187

ABSTRACT

An angle dependent analysis of the planar Hall effect (PHE) in nanocrystalline single-domain Co(60)Fe(20)B(20) thin films is reported. In a combined experimental and theoretical study we show that the transverse resistivity of the PHE is entirely driven by anisotropic magnetoresistance (AMR). Our results for Co(60)Fe(20)B(20) obtained from first principles theory in conjunction with a Boltzmann transport model take into account the nanocrystallinity and the presence of 20 at. % boron. The ab initio AMR ratio of 0.12% agrees well with the experimental value of 0.22%. Furthermore, we experimentally demonstrate that the anomalous Hall effect contributes negligibly in the present case.


Subject(s)
Boron Compounds/chemistry , Cobalt/chemistry , Iron Compounds/chemistry , Nanoparticles/chemistry , Electron Transport
11.
J Clin Microbiol ; 6(4): 414-9, 1977 Oct.
Article in English | MEDLINE | ID: mdl-72075

ABSTRACT

Rhodes' silver-plating technique for staining flagella was tested for its reliability and convenience as a routine procedure in the clinical laboratory. Modifications were made in the stain preparation and the procedure of staining and were tested with smears of known motile gram-negative nonfermentative bacilli. The stain has proved to be accurate and reliable and can be easily utilized with a minimum of training.


Subject(s)
Bacteria/ultrastructure , Flagella/ultrastructure , Staining and Labeling/methods , Alcaligenes/ultrastructure , Bordetella/ultrastructure , Evaluation Studies as Topic , Pseudomonas/ultrastructure , Pseudomonas aeruginosa/ultrastructure , Silver , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...