Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990174

ABSTRACT

We investigated in this work ruthenium-ligand bonding across the RuN framework in 12 Ru(II) polypyridyl complexes in the gas phase and solution for both singlet and triplet states, in addition to their affinity for DNA binding through π-π stacking interactions with DNA nucleobases. As a tool to assess the intrinsic strength of the ruthenium-ligand bonds, we determined local vibrational force constants via our local vibrational mode analysis software. We introduced a novel local force constant that directly accounts for the intrinsic strength of the π-π stacking interaction between DNA and the intercalated Ru(II) complex. According to our findings, [Ru(phen)2(dppz)]2+ and [Ru(phen)2(11-CN-dppz)]2+ provide an intriguing trade-off between photoinduced complex excitation and the strength of the subsequent π-π stacking interaction with DNA. [Ru(phen)2(dppz)]2+ displays a small singlet-triplet splitting and a strong π-π stacking interaction in its singlet state, suggesting a favorable photoexcitation but potentially weaker interaction with DNA in the excited state. Conversely, [Ru(phen)2(11-CN-dppz)]2+ exhibits a larger singlet-triplet splitting and a stronger π-π stacking interaction with DNA in its triplet state, indicating a less favorable photoinduced transition but a stronger interaction with DNA postexcitation. We hope our study will inspire future experimental and computational work aimed at the design of novel Ru-polypyridyl drug candidates and that our new quantitative measure of π-π stacking interactions in DNA will find a general application in the field.

2.
J Am Chem Soc ; 146(1): 145-158, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38055807

ABSTRACT

Ceroid lipofuscinosis neuronal protein 5 (Cln5) is encoded by the CLN5 gene. The genetic variants of this gene are associated with the CLN5 form of Batten disease. Recently, the first crystal structure of Cln5 was reported. Cln5 shows cysteine palmitoyl thioesterase S-depalmitoylation activity, which was explored via fluorescent emission spectroscopy utilizing the fluorescent probe DDP-5. In this work, the mechanism of the reaction between Cln5 and DDP-5 was studied computationally by applying a QM/MM methodology at the ωB97X-D/6-31G(d,p):AMBER level. The results of our study clearly demonstrate the critical role of the catalytic triad Cys280-His166-Glu183 in S-depalmitoylation activity. This is evidenced through a comparison of the pathways catalyzed by the Cys280-His166-Glu183 triad and those with only Cys280 involved. The computed reaction barriers are in agreement with the catalytic efficiency. The calculated Gibb's free-energy profile suggests that S-depalmitoylation is a rate-limiting step compared to the preceding S-palmitoylation, with barriers of 26.1 and 25.3 kcal/mol, respectively. The energetics were complemented by monitoring the fluctuations in the electron density distribution through NBO charges and bond strength alterations via local mode stretching force constants during the catalytic pathways. This comprehensive protocol led to a more holistic picture of the reaction mechanism at the atomic level. It forms the foundation for future studies on the effects of gene mutations on both the S-palmitoylation and S-depalmitoylation steps, providing valuable data for the further development of enzyme replacement therapy, which is currently the only FDA-approved therapy for childhood neurodegenerative diseases, including Batten disease.


Subject(s)
Membrane Proteins , Neuronal Ceroid-Lipofuscinoses , Humans , Child , Membrane Proteins/metabolism , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/metabolism , Mutation
3.
J Comput Chem ; 45(9): 574-588, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38041830

ABSTRACT

We investigated the intrinsic strength of distal and proximal FeN bonds for both ferric and ferrous oxidation states of bishistidyl hemoproteins from bacteria, animals, human, and plants, including two cytoglobins, ten hemoglobins, two myoglobins, six neuroglobins, and six phytoglobins. As a qualified measure of bond strength, we used local vibrational force constants k a (FeN) based on local mode theory developed in our group. All calculations were performed with a hybrid QM/MM ansatz. Starting geometries were taken from available x-ray structures. k a (FeN) values were correlated with FeN bond lengths and covalent bond character. We also investigated the stiffness of the axial NFeN bond angle. Our results highlight that protein effects are sensitively reflected in k a (FeN), allowing one to compare trends in diverse protein groups. Moreover, k a (NFeN) is a perfect tool to monitor changes in the axial heme framework caused by different protein environments as well as different Fe oxidation states.


Subject(s)
Histidine , Iron , Animals , Humans , Iron/chemistry , Heme/chemistry , Hemoglobins , Oxidation-Reduction
4.
J Phys Chem A ; 127(40): 8316-8329, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37774120

ABSTRACT

In this study, we investigated the interaction between the H2S ligand and the heme pocket of hemoglobin I (HbI) of Lucina pectinata for the wild-type protein; three known mutations where distal glutamine is replaced by hydrophobic valine (Gln64Val) and hydrophilic histidine in both protonation forms (Gln64Hisϵ and Gln64Hisδ); five known mutations of the so-called phenyl cage, replacing the hydrophobic phenylalanines Phe29 and Phe43 with tyrosine (Tyr), valine (Val), or leucine (Leu); and two additional mutations, Phe68Tyr and Phe68Val, in order to complement previous studies with new insights about the binding mechanism at the molecular level. A particular focus was on the intrinsic strengths of the chemical bonds involved, utilizing local vibrational force constants based on combined quantum mechanical-molecular mechanical calculations. Wild-type protein and mutations clustered into two distinct groups: Group 1 protein systems with a proton acceptor in the distal protein pocket, close to one of the H2S bonds, and Group 2 protein systems without a hydrogen acceptor close by in the active site of the protein. According to our results, the interactions between H2S and HbI of Lucina pectinata involve two important elements, namely, binding of H2S to Fe of the heme group, followed by the proton transfer from the HS bond to the distal residue. The distal residue is additionally stabilized by a second proton transfer from the distal residue to COO- of the propionate group in heme. We could identify the FeS bond as a key player and discovered that the strength of this bond depends on two mutual factors, namely, the strength of the HS bond involved in the proton transfer and the electrostatic field of the protein pocket qualifying the FeS bond as a sensitive probe for monitoring changes in H2S ligation upon protein mutations. We hope our study will inspire and guide future experimental studies, targeting new promising mutations such as Phe68Tyr, Phe68Val, or Phe43Tyr/Phe68Val.

5.
Inorg Chem ; 62(31): 12510-12524, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37478353

ABSTRACT

Uranium metallocenes have recently attracted attention driven by their use as catalysts in organometallic synthesis. In addition to bent U(IV) and U(III), an U(II) metallocene [(η5-C5i Pr5)2U] was synthesized with an unusual linear Cp-U-Cp angle. In this work, we investigated 22 U(II) metallocenes, (i) assessing the intrinsic strength of the U-ring interactions in these complexes with a novel bond strength measure based on our local vibrational mode analysis and (ii) systematically exploring what makes these U(II) metallocenes bent. We included relativistic effects through the NESCau Hamiltonian and complemented the local mode analysis with natural bonding orbital (NBO) and quantum theory of atoms in molecules (QTAIM) data. Our study led to the following results: (i) reduction of bulky U-ring ligand substituents does not lead to bent complexes for alkyl substituents (iPr and iBu) in contrast to SiMe3 ring substituents, which are all bent. (ii) The most bent complexes are [(η5-C5H4SiMe3)2U] (130°) and [η5-P5H5)2U] (143°). (iii) Linear complexes showed one hybridized NBO with s/d character, while bent structures were characterized by s/d/f mixing. (iv) We did not observe a correlation between the strength of the U-ring interaction and the amount of the ring-U-ring bend; the strongest interaction was found for [η5-Cp)2U] and the weakest for [η5-P5H5)2U]. In conclusion, our results provide a foundation for the design of U(II) metallocenes with specific physicochemical properties and increased reactivity.

6.
Chem Commun (Camb) ; 59(47): 7151-7165, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37233449

ABSTRACT

One of the ultimate goals of chemistry is to understand and manipulate chemical reactions, which implies the ability to monitor the reaction and its underlying mechanism at an atomic scale. In this article, we introduce the Unified Reaction Valley Approach (URVA) as a tool for elucidating reaction mechanisms, complementing existing computational procedures. URVA combines the concept of the potential energy surface with vibrational spectroscopy and describes a chemical reaction via the reaction path and the surrounding reaction valley traced out by the reacting species on the potential energy surface on their way from the entrance to the exit channel, where the products are located. The key feature of URVA is the focus on the curving of the reaction path. Moving along the reaction path, any electronic structure change of the reacting species is registered by a change in the normal vibrational modes spanning the reaction valley and their coupling with the path, which recovers the curvature of the reaction path. This leads to a unique curvature profile for each chemical reaction, with curvature minima reflecting minimal change and curvature maxima indicating the location of important chemical events such as bond breaking/formation, charge polarization and transfer, rehybridization, etc. A decomposition of the path curvature into internal coordinate components or other coordinates of relevance for the reaction under consideration, provides comprehensive insight into the origin of the chemical changes taking place. After giving an overview of current experimental and computational efforts to gain insight into the mechanism of a chemical reaction and presenting the theoretical background of URVA, we illustrate how URVA works for three diverse processes, (i) [1,3] hydrogen transfer reactions; (ii) α-keto-amino inhibitor for SARS-CoV-2 Mpro; (iii) Rh-catalyzed cyanation. We hope that this article will inspire our computational colleagues to add URVA to their repertoire and will serve as an incubator for new reaction mechanisms to be studied in collaboration with our experimental experts in the field.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Vibration
7.
J Phys Chem A ; 126(49): 9313-9331, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36472412

ABSTRACT

LModeAGen, a new protocol for the automatic determination of a nonredundant, complete set of local vibrational modes is reported, which is based on chemical graph concepts. Whereas local mode properties can be calculated for a selection of parameters targeting specific local modes of interest, a complete set of nonredundant local mode parameters is requested for the adiabatic connection scheme (ACS), relating each local vibrational mode with a normal mode counterpart, and for the decomposition of normal modes (CNM) in terms of local mode contributions, a unique way to analyze vibrational spectra. So far, nonredundant parameter sets have been generated manually following chemical intuition or from a set of redundant parameters in a trial-and-error fashion, which has hampered the study of larger systems with hundreds of parameters. LModeAGen was successfully applied for a test set of 11 systems, ranging from small molecules to the large QM (>100 atoms) subsystem of carbomonoxy-neuroglobin protein, described with a hybrid QM/MM method. The ωB97X-D/aug-cc-pVDZ, M06L/def2-TZVP, and QM/MM ωB97X-D/6-31G(d,p)/AMBER model chemistries were adopted for the description of the molecules in the test set. Our new protocol is an important step forward for a routine ACS and CNM analysis of the vibrational spectra of complex and large systems with hundreds of atoms, providing new access to important encoded electronic structure information.


Subject(s)
Quantum Theory , Vibration , Proteins/chemistry
8.
J Phys Chem A ; 126(47): 8781-8798, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36346943

ABSTRACT

This Feature Article starts highlighting some recent experimental and theoretical advances in the field of IR and Raman spectroscopy, giving a taste of the breadth and dynamics of this striving field. The local mode theory is then reviewed, showing how local vibrational modes are derived from fundamental normal modes. New features are introduced that add to current theoretical efforts: (i) a unique measure of bond strength based on local mode force constants ranging from bonding in single molecules in different environments to bonding in periodic systems and crystals and (ii) a new way to interpret vibrational spectra by pinpointing and probing interactions between particular bond stretching contributions to the normal modes. All of this represents a means to work around the very nature of normal modes, namely that the vibrational motions in polyatomic molecules are delocalized. Three current focus points of the local mode analysis are reported, demonstrating how the local mode analysis extracts important information hidden in vibrational spectroscopy data supporting current experiments: (i) metal-ligand bonding in heme proteins, such as myoglobin and neuroglobin; (ii) disentanglement of DNA normal modes; and (iii) hydrogen bonding in water clusters and ice. Finally, the use of the local mode analysis by other research groups is summarized. Our vision is that in the future local mode analysis will be routinely applied by the community and that this Feature Article serves as an incubator for future collaborations between experiment and theory.


Subject(s)
Spectrum Analysis, Raman , Vibration , Hydrogen Bonding , Water/chemistry , DNA/chemistry
9.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293162

ABSTRACT

Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) cause serious public health problems, with nearly 390 million people affected and 20,000 deaths per year in tropical and subtropical countries. Despite numerous attempts, no antiviral drug or vaccine is currently available to combat the manifestation. The challenge of discovering an efficient vaccine is enhanced by the surplus presence of efficient vectors and drug resistance from the virus. For centuries, papaya (Carica papaya) extracts have been traditionally used to treat DF, DHF, and DSS. In the present study, we systematically investigated seven compounds isolated from papaya leaf extract with regard to their potential as inhibitors for non-structural (NS) proteins, NS3 and NS5, which play a crucial role in viral RNA replication. The computational tools applied stretched across classical molecular docking, molecular dynamics (MD) simulations and SwissADME used to calculate binding affinities; binding free energies; Absorption, Distribution, Metabolism, and Excretion (ADME); and drug-likeness properties, thus, identifying Kaempferol, Chlorogenic acid, and Quercetin as potential candidates, with Kaempferol and Quercetin scoring best. Therefore, for the Kaempferol and Quercetin complexes, hybrid quantum mechanical/molecular mechanical (QM/MM) geometry and frequency calculations were performed, followed by the local mode analysis developed in our group to quantify Kaempferol-NS and Quercetin-NS hydrogen bonding. Given the non-toxic nature and the wide availability of the Kaempferol and Quercetin papaya extract in almost all of the susceptible regions, and our results showing high NS3 and NS5 binding affinities and energies, strong hydrogen bonding with both NS3 and NS5, and excellent ADME properties, we suggest Kaempferol and Quercetin as a strong NS3 and NS5 inhibitor to be further investigated in vitro.


Subject(s)
Carica , Dengue Virus , Dengue , Humans , Carica/chemistry , Dengue/drug therapy , Kaempferols/therapeutic use , Molecular Docking Simulation , Quercetin/therapeutic use , Chlorogenic Acid/therapeutic use , RNA, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Plant Extracts/therapeutic use , Viral Nonstructural Proteins/chemistry
10.
J Chem Phys ; 157(1): 014301, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35803826

ABSTRACT

In this work, we investigated bonding features of 15 ruthenium(II) nitrile complexes of the type [Ru(tpy)(L)-(CH3CN)]n+, containing the tridentate tpy ligand (tpy = 2,2':6',2″-terpyridine) and various bidentate ancillary ligands L; 12 compounds originally synthesized by Loftus et al. [J. Phys. Chem. C 123, 10291-10299 (2019)] and three new complexes. We utilized local vibrational force constants derived from the local mode theory as a quantitative measure of bond strength complemented with the topological analysis of the electron density and the natural bond orbital analysis. Loftus et al. suggested that nitrile dissociation occurs after light induced singlet-triplet transition of the original complexes and they used as a measure of nitrile release efficiency quantum yields for ligand exchange in water. They observed larger quantum yields for complexes with smaller singlet-triplet energy gaps. The major goal of this work was to assess how the Ru-NC and Ru-L bond strengths in these 15 compounds relate to and explain the experimental data of Loftus et al., particularly focusing on the question whether there is a direct correlation between Ru-NC bond strength and measured quantum yield. Our study provides the interesting result that the compounds with the highest quantum yields also have the strongest Ru-NC bonds suggesting that breaking the Ru-NC bond is not the driving force for the delivery process rather than the change of the metal framework as revealed by first results of a unified reaction valley approach investigation of the mechanism. Compounds with the highest quantum yield show larger electronic structure changes upon singlet-triplet excitation, i.e., larger changes in bond strength, covalency, and difference between the singlet and triplet HOMOs, with exception of the compound 12. In summary, this work provides new insights into the interplay of local properties and experimental quantum yields forming in synergy a useful tool for fine tuning of existing and future design of new nitrile releasing ruthenium compounds. We hope that this work will bring theoretical and experimental studies closer together and serves as an incubator for future collaboration between computational chemists and their experimental colleagues.


Subject(s)
Ruthenium , Ligands , Nitriles , Pharmaceutical Preparations , Ruthenium/chemistry , Water/chemistry
11.
Molecules ; 28(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36615456

ABSTRACT

In this work, we analyzed five groups of different dihydrogen bonding interactions and hydrogen clusters with an H3+ kernel utilizing the local vibrational mode theory, developed by our group, complemented with the Quantum Theory of Atoms-in-Molecules analysis to assess the strength and nature of the dihydrogen bonds in these systems. We could show that the intrinsic strength of the dihydrogen bonds investigated is primarily related to the protonic bond as opposed to the hydridic bond; thus, this should be the region of focus when designing dihydrogen bonded complexes with a particular strength. We could also show that the popular discussion of the blue/red shifts of dihydrogen bonding based on the normal mode frequencies is hampered from mode-mode coupling and that a blue/red shift discussion based on local mode frequencies is more meaningful. Based on the bond analysis of the H3+(H2)n systems, we conclude that the bond strength in these crystal-like structures makes them interesting for potential hydrogen storage applications.

12.
J Mol Model ; 27(11): 320, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34633543

ABSTRACT

In this work, we investigated the formation of protonated hydrogen cyanide HCNH+ and methylene amine cation CH[Formula: see text] (both identified in Titan's upper atmosphere) from three different pathways which stem from the interaction between CH4 and N+(3P). As a mechanistic tool, we used the Unified Reaction Valley Approach (URVA) complemented with the Local Mode Analysis (LMA) assessing the strength of the CN bonds formed in these reactions. Our URVA studies could provide a comprehensive overview on bond formation/cleavage processes relevant to the specific mechanism of eight reactions R1- R8 that occur across the three pathways. In addition, we could explain the formation of CH[Formula: see text] and the appearance of HCNH+ and CHNH[Formula: see text] along these paths. Although only smaller molecules are involved in these reactions including isomerization, hydrogen atom abstraction, and hydrogen molecule capture, we found a number of interesting features, such as roaming in reaction R3 or the primary interaction of H2 with the carbon atom in HCNH+ in reaction R8 followed by migration of one of the H2 hydrogen atoms to the nitrogen which is more cost effective than breaking the HH bond first; a feature often found in catalysis. In all cases, charge transfer between carbon and nitrogen could be identified as a driving force for the CN bond formation. As revealed by LMA, the CN bonds formed in reactions R1-R8 cover a broad bond strength range from very weak to very strong, with the CN bond in protonated hydrogen cyanide HCNH+ identified as the strongest of all molecules investigated in this work. Our study demonstrates the large potential of both URVA and LMA to shed new light into these extraterrestrial reactions to help better understand prebiotic processes as well as develop guidelines for future investigations involving areas of complex interstellar chemistry. In particular, the formation of CN bonds as a precursor to the extraterrestrial formation of amino acids will be the focus of future investigations. Formation of CN bonds in Titan's atmosphere visualized via the reaction path curvature.

13.
J Chem Phys ; 155(2): 024116, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34266275

ABSTRACT

This work introduces a novel application of generative adversarial networks (GANs) for the prediction of starting geometries in transition state (TS) searches based on the geometries of reactants and products. The multi-dimensional potential energy space of a chemical reaction often complicates the location of a starting TS geometry, leading to the correct TS combining reactants and products in question. The proposed TS-GAN efficiently maps the space between reactants and products and generates reliable TS guess geometries, and it can be easily combined with any quantum chemical software package performing geometry optimizations. The TS-GAN was trained and applied to generate TS guess structures for typical chemical reactions, such as hydrogen migration, isomerization, and transition metal-catalyzed reactions. The performance of the TS-GAN was directly compared to that of classical approaches, proving its high accuracy and efficiency. The current TS-GAN can be extended to any dataset that contains sufficient chemical reactions for training. The software is freely available for training, experimentation, and prediction at https://github.com/ekraka/TS-GAN.

14.
Molecules ; 26(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919989

ABSTRACT

In this work hydrogen bonding in a diverse set of 36 unnatural and the three natural Watson Crick base pairs adenine (A)-thymine (T), adenine (A)-uracil (U) and guanine (G)-cytosine (C) was assessed utilizing local vibrational force constants derived from the local mode analysis, originally introduced by Konkoli and Cremer as a unique bond strength measure based on vibrational spectroscopy. The local mode analysis was complemented by the topological analysis of the electronic density and the natural bond orbital analysis. The most interesting findings of our study are that (i) hydrogen bonding in Watson Crick base pairs is not exceptionally strong and (ii) the N-H⋯N is the most favorable hydrogen bond in both unnatural and natural base pairs while O-H⋯N/O bonds are the less favorable in unnatural base pairs and not found at all in natural base pairs. In addition, the important role of non-classical C-H⋯N/O bonds for the stabilization of base pairs was revealed, especially the role of C-H⋯O bonds in Watson Crick base pairs. Hydrogen bonding in Watson Crick base pairs modeled in the DNA via a QM/MM approach showed that the DNA environment increases the strength of the central N-H⋯N bond and the C-H⋯O bonds, and at the same time decreases the strength of the N-H⋯O bond. However, the general trends observed in the gas phase calculations remain unchanged. The new methodology presented and tested in this work provides the bioengineering community with an efficient design tool to assess and predict the type and strength of hydrogen bonding in artificial base pairs.


Subject(s)
Base Pairing , Vibration , DNA/chemistry , Hydrogen Bonding , Thermodynamics
15.
Theor Chem Acc ; 140(3): 31, 2021.
Article in English | MEDLINE | ID: mdl-33716564

ABSTRACT

In this work, a simplified formulation of our recently developed generalized subsystem vibrational analysis (GSVA) for obtaining intrinsic fragmental vibrations (J Chem Theory Comput 14:2558, 2018) is presented. In contrast to the earlier implementation, which requires the explicit definition of a non-redundant set of internal coordinate parameters to be constructed for the subsystem, the new implementation circumvents this process by employing massless Eckart conditions to the subsystem fragment paired with a Gram-Schmidt orthogonalization to span the same internal vibration space indirectly. This revised version of GSVA (rev-GSVA) can be applied to equilibrium structure as well as transition state structure, and it has been incorporated into the open-source package UniMoVib (https://github.com/zorkzou/UniMoVib). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00214-021-02727-y.

16.
Molecules ; 26(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670107

ABSTRACT

For decades one has strived to synthesize a compound with the longest covalent C-C bond applying predominantly steric hindrance and/or strain to achieve this goal. On the other hand electronic effects have been added to the repertoire, such as realized in the electron deficient ethane radical cation in its D3d form. Recently, negative hyperconjugation effects occurring in diamino-o-carborane analogs such as di-N,N-dimethylamino-o-carborane have been held responsible for their long C-C bonds. In this work we systematically analyzed CC bonding in a diverse set of 53 molecules including clamped bonds, highly sterically strained complexes such as diamondoid dimers, electron deficient species, and di-N,N-dimethylamino-o-carborane to cover the whole spectrum of possibilities for elongating a covalent C-C bond to the limit. As a quantitative intrinsic bond strength measure, we utilized local vibrational CC stretching force constants ka(CC) and related bond strength orders BSO n(CC), computed at the ωB97X-D/aug-cc-pVTZ level of theory. Our systematic study quantifies for the first time that whereas steric hindrance and/or strain definitely elongate a C-C bond, electronic effects can lead to even longer and weaker C-C bonds. Within our set of molecules the electron deficient ethane radical cation, in D3d symmetry, acquires the longest C-C bond with a length of 1.935 Å followed by di-N,N-dimethylamino-o-carborane with a bond length of 1.930 Å. However, the C-C bond in di-N,N-dimethylamino-o-carborane is the weakest with a BSO n value of 0.209 compared to 0.286 for the ethane radical cation; another example that the longer bond is not always the weaker bond. Based on our findings we provide new guidelines for the general characterization of CC bonds based on local vibrational CC stretching force constants and for future design of compounds with long C-C bonds.


Subject(s)
Carbon/chemistry , Models, Molecular , Vibration , Electrons , Hydrogen Bonding , Quantum Theory
17.
J Org Chem ; 86(8): 5714-5726, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33780251

ABSTRACT

Hydroxylation is an effective approach for the synthesis of carbon-oxygen bonds and allylic ethers. The [NHC]Au(I) catalyzed intermolecular hydroalkoxylation of allene was studied at the DFT and Coupled Cluster level of theory. Using the Unified Reaction Valley Approach (URVA), we carry out a comprehensive mechanistic analysis of [NHC]Au(I)-catalyzed and noncatalyzed reactions. The URVA study of several possible reaction pathways reveal that the [NHC]Au(I) catalyst enables the hydroalkoxylation reaction to occur via a two step mechanism based upon the Au ability to switch between π- and σ-complexation. The first step of the mechanism involves the formation of a CO bond after the transition state with no energy penalty. Following the CO bond breakage, the OH bond breaks and CH bond forms during the second step of the mechanism, as the catalyst transforms into the more stable π-Au complex. The URVA results were complemented with local vibrational mode analysis to provide measures of intrinsic bond strength for Au(I)-allene interactions of all stationary points, and NBO analysis was applied in order to observe charge transfer events along the reaction pathway. Overall, the π-Au C═C interactions of the products are stronger than those of the reactants adding to their exothermicity. Our work on the hydroxylation of allene provides new insights for the design of effective reaction pathways to produce allylic ethers and also unravels new strategies to form C-O bonds by activation of C═C bonds.

18.
J Phys Chem A ; 124(43): 8978-8993, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33064477

ABSTRACT

The unified reaction valley approach combined with the local vibrational mode and ring puckering analysis is applied to investigate the hydrogen evolution from water in the presence of small hydrides such as BH3, metal hydrides as AlH3, and their derivatives. We studied a series of reactions involving BH3, AlH3, B2H6, Al2H6, and AlH3BH3 with one- and two-water molecules, considering multiple reaction paths. In addition, the influence of the aqueous medium was examined. A general reaction mechanism was identified for most of the reactions. Those that deviate could be associated with unusually high reaction barriers with no hydrogen release. The charge transfer along the reaction path suggests that a viable hydrogen release is achieved when the catalyst adopts the role of a charge donor during the chemical processes. The puckering analysis showed that twistboat and boat forms are the predominant configurations in the case of an intermediate six-membered ring formation, which influences the activation barrier. The local mode analysis was used as a tool to detect the H-H bond formation as well as to probe catalyst regenerability. Based on the correlation between the activation energy and the change in the charge separation for cleaving O-H and B(Al)-H bonds, two promising subsets of reactions could be identified along with prescriptions for lowering the reaction barrier individually with electron-donating/withdrawing substituents.

19.
J Mol Model ; 26(10): 281, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32970192

ABSTRACT

The interplay between FeC and CO bonding in carboxymyoglobin (MbCO) and the role of potential hydrogen bonding between the CO moiety and the side chains of the surrounding protein amino acids have been the subject of numerous experimental and theoretical studies. In this work, we present a quantitative measure for the intrinsic FeC and CO bond strength in MbCO, as well as for CO⋯H bonding, based on the local vibrational mode analysis, originally developed by Konkoli and Cremer. We investigated a gas phase model, two models of the wild-type protein, and 17 protein mutations that change the distal polarity of the heme pocket, as well as two protein mutations of the heme porphyrin ring. Based on local mode force constants, we could quantify for the first time the suggested inverse relationship between the CO and FeC bond strength, the strength of CO⋯H bonding, and how it weakens the CO bond. Combined with the natural orbital analysis, we could also confirm the key role of π back donation between Fe and the CO moiety in determining the FeC bond strength. We further clarified that CO and FeC normal modes couple with other protein motions in the protein environment. Therefore, normal mode frequencies/force constants are not suited as bond strength descriptors and instead their local mode counterparts should be used. Our comprehensive results provide new guidelines for the fine-tuning of existing and the design of MbCO models with specific FeC, CO, and CO⋯H bond strengths.Graphical abstract.


Subject(s)
Carbon Monoxide/chemistry , Models, Molecular , Myoglobin/chemistry , Algorithms , Hydrogen Bonding , Molecular Structure , Mutation , Myoglobin/genetics , Vibration
20.
Sensors (Basel) ; 20(8)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326248

ABSTRACT

Over the past two decades, the vibrational Stark effect has become an important tool to measure and analyze the in situ electric field strength in various chemical environments with infrared spectroscopy. The underlying assumption of this effect is that the normal stretching mode of a target bond such as CO or CN of a reporter molecule (termed vibrational Stark effect probe) is localized and free from mass-coupling from other internal coordinates, so that its frequency shift directly reflects the influence of the vicinal electric field. However, the validity of this essential assumption has never been assessed. Given the fact that normal modes are generally delocalized because of mass-coupling, this analysis was overdue. Therefore, we carried out a comprehensive evaluation of 68 vibrational Stark effect probes and candidates to quantify the degree to which their target normal vibration of probe bond stretching is decoupled from local vibrations driven by other internal coordinates. The unique tool we used is the local mode analysis originally introduced by Konkoli and Cremer, in particular the decomposition of normal modes into local mode contributions. Based on our results, we recommend 31 polyatomic molecules with localized target bonds as ideal vibrational Stark effect probe candidates.

SELECTION OF CITATIONS
SEARCH DETAIL
...