ABSTRACT
Urbanization in watersheds leads to the introduction of sources of microplastics and other pollutants in water bodies. However, the effect of urbanization on microplastic pollution and the relationship between microplastics and water quality are not well understood. We assessed the distribution of microplastics in tributaries urbanized, non-urbanized and in the receiving lagoon body of Conceição Lagoon watershed. The results show that urbanization significantly affects water quality but does not differentiate tributaries in terms of microplastic concentrations. Microplastic concentrations were lower in the receiving lagoon body compared with the tributaries, highlighting their importance in microplastic pollution in the studied lagoon. Microplastic concentration was correlated with low N:P ratios in the lagoon and associated with high levels of total phosphorus, which indicate the discharge of effluents. The correlations between microplastic concentration, water temperature, and dissolved oxygen in the lagoon were based on the temporal variations of these variables. Precipitation and wind velocity had influence on microplastic distribution in the watershed. Our findings underscore the importance of evaluating water quality parameters and meteorological variables to comprehend the microplastic distribution at small watersheds.
Subject(s)
Environmental Monitoring , Microplastics , Urbanization , Water Pollutants, Chemical , Water Quality , Brazil , Microplastics/analysis , Water Pollutants, Chemical/analysisABSTRACT
In subtidal zones, certain shrimp species with cryptic behaviour represent a gap in the biodiversity description in many places in the world. This study extends the southern limit of Stenopus hispidus (Oliver, 1811), Alpheus formosus Gibbes, 1850, Alpheus cf. packardii Kingsley, 1880 and Lysmata ankeri Rhyne & Lin, 2006 to Santa Catarina State-Brazil, 27oS. The results also confirm the new occurrence of Stenopus spinosus Risso, 1827 in Brazilian waters. All specimens were collected by scuba diving from rocky islands between 3 and 25 meters depth. We present for each species certain taxonomic features in colour images that will help to identify these decapods in situ in further monitoring programs.
Subject(s)
Decapoda/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Atlantic Ocean , Body Size , Brazil , Decapoda/anatomy & histology , Decapoda/growth & development , Ecosystem , Female , Male , Organ SizeABSTRACT
Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.