Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(10): 107947, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37841583

ABSTRACT

Invariant Natural Killer T (iNKT) cell activation by α-galactosylceramide (αGC) potentiates cytotoxic immune responses against tumors. However, αGC-induced liver injury is a limiting factor for iNKT-based immunotherapy. Although adrenergic receptor stimulation is an important immunosuppressive signal that curbs tissue damage induced by inflammation, its effect on the antitumor activity of invariant Natural Killer T (iNKT) cells remains unclear. We use mouse models and pharmacological tools to show that the stimulation of the sympathetic nervous system (SNS) inhibits αGC-induced liver injury without impairing iNKT cells' antitumoral functions. Mechanistically, SNS stimulation prevents the collateral effect of TNF-α production by iNKT cells and neutrophil accumulation in hepatic parenchyma. Our results suggest that the modulation of the adrenergic signaling can be a complementary approach to αGC-based immunotherapy to mitigate iNKT-induced liver injury without compromising its antitumoral activity.

2.
Immunother Adv ; 2(1): ltac010, 2022.
Article in English | MEDLINE | ID: mdl-36284839

ABSTRACT

Macrophages are immune cells that are widespread throughout the body and critical for maintaining tissue homeostasis. Their remarkable plasticity allows them to acquire different phenotypes, becoming able either to fight infection (M1-like, classically activated macrophages) or to promote tissue remodeling and repair (M2-like, alternatively activated macrophages). These phenotypes are induced by different cues present in the microenvironment. Among the factors that might regulate macrophage activation are mediators produced by different branches of the nervous system. The regulation exerted by the sympathetic nervous system (SNS) on macrophages (and the immune system in general) is becoming a subject of increasing interest, indeed a great number of articles have been published lately. Catecholamines (noradrenaline and adrenaline) activate α and ß adrenergic receptors expressed by macrophages and shape the effector functions of these cells in contexts as diverse as the small intestine, the lung, or the adipose tissue. Activation of different subsets of receptors seems to produce antagonistic effects, with α adrenergic receptors generally associated with pro-inflammatory functions and ß adrenergic receptors (particularly ß2) related to the resolution of inflammation and tissue remodeling. However, exceptions to this paradigm have been reported, and the factors contributing to these apparently contradictory observations are still far from being completely understood. Additionally, macrophages per se seem to be sources of catecholamines, which is also a subject of some debate. In this review, we discuss how activation of adrenergic receptors modulates macrophage effector functions and its implications for inflammatory responses and tissue homeostasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...