Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739436

ABSTRACT

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Subject(s)
Anti-Bacterial Agents , Endopeptidases , Glucans , Polymyxin B , Salmonella Phages , Endopeptidases/pharmacology , Endopeptidases/chemistry , Endopeptidases/metabolism , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Salmonella Phages/genetics , Salmonella Phages/physiology , Salmonella Phages/chemistry , Glucans/chemistry , Glucans/pharmacology , Animals , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/virology , Mice , Salmonella typhimurium/virology , Salmonella typhimurium/drug effects , Bacteriophages/physiology , Bacteriophages/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Viral Proteins/pharmacology , Viral Proteins/chemistry
2.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710545

ABSTRACT

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Subject(s)
Cellulose , Food Packaging , Lignin , Lignin/analogs & derivatives , Nanocomposites , Nanofibers , Tensile Strength , Wood , Xylans , Food Packaging/methods , Lignin/chemistry , Nanocomposites/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Wood/chemistry , Nanofibers/chemistry , Xylans/chemistry , Antioxidants/chemistry , Fruit/chemistry
3.
Macromol Rapid Commun ; : e2400129, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778746

ABSTRACT

Biopolymeric implantable patches are popular scaffolds for myocardial regeneration applications. Besides being biocompatible, they can be tailored to have required properties and functionalities for this application. Recently, fibrillar biobased nanostructures prove to be valuable in the development of functional biomaterials for tissue regeneration applications. Here, periodate-oxidized nanofibrillated cellulose (OxNFC) is blended with lysozyme amyloid nanofibrils (LNFs) to prepare a self-crosslinkable patch for myocardial implantation. The OxNFC:LNFs patch shows superior wet mechanical properties (60 MPa for Young's modulus and 1.5 MPa for tensile stress at tensile strength), antioxidant activity (70% scavenging activity under 24 h), and bioresorbability ratio (80% under 91 days), when compared to the patches composed solely of NFC or OxNFC. These improvements are achieved while preserving the morphology, required thermal stability for sterilization, and biocompatibility toward rat cardiomyoblast cells. Additionally, both OxNFC and OxNFC:LNFs patches reveal the ability to act as efficient vehicles to deliver spermine modified acetalated dextran nanoparticles, loaded with small interfering RNA, with 80% of delivery after 5 days. This study highlights the value of simply blending OxNFC and LNFs, synergistically combining their key properties and functionalities, resulting in a biopolymeric patch that comprises valuable characteristics for myocardial regeneration applications.

4.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38069001

ABSTRACT

Increasing evidence has been published over recent years on the implication of endocrine-disrupting chemicals (EDCs), including parabens and benzophenones in the pathogenesis and pathophysiology of endometriosis. However, to the best of our knowledge, no study has been published on the ways in which exposure to EDCs might affect cell-signaling pathways related to endometriosis. We aimed to describe the endometriotic tissue expression profile of a panel of 23 genes related to crucial cell-signaling pathways for the development and progression of endometriosis (cell adhesion, invasion/migration, inflammation, angiogenesis, and cell proliferation/hormone stimulation) and explore its relationship with the exposure of patients to parabens (PBs) and benzophenones (BPs). This cross-sectional study included a subsample of 33 women with endometriosis from the EndEA study, measuring their endometriotic tissue expressions of 23 genes, while urinary concentrations of methyl-, ethyl-, propyl-, butyl-paraben, benzophenone-1, benzophenone-3, and 4-hydroxybenzophenone were determined in 22 women. Spearman's correlations test and linear and logistic regression analyses were performed. The expression of 52.2% of studied genes was observed in >75% of endometriotic tissue samples and the expression of 17.4% (n = 4) of them in 50-75%. Exposure to certain PB and BP congeners was positively associated with the expression of key genes for the development and proliferation of endometriosis. Genes related to the development and progression of endometriosis were expressed in most endometriotic tissue samples studied, suggesting that exposure of women to PBs and BPs may be associated with the altered expression profile of genes related to cellular pathways involved in the development of endometriosis.


Subject(s)
Endocrine Disruptors , Endometriosis , Humans , Female , Parabens/adverse effects , Endometriosis/chemically induced , Endometriosis/genetics , Cross-Sectional Studies , Benzophenones/adverse effects
5.
Mater Today Bio ; 22: 100733, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37533730

ABSTRACT

Antimicrobial photodynamic therapy (aPDT) is a potent tool to surpass the global rise of antimicrobial resistance; still, the effective topical administration of photosensitizers remains a challenge. Biopolymer-based adhesive films can safely extend the residence time of photosensitizers. However, their wide application is narrowed by their limited water absorption capacity and gel strength. In this study, pullulan-based films with a switchable character (from a solid film to an adhesive hydrogel) were developed. This was accomplished by the incorporation of a betaine-based deep eutectic solvent (DES) containing curcumin (4.4 µg.cm-2) into the pullulan films, which tuned the films' skin moisture absorption ability, and therefore they switch into an adhesive hydrogel capable of delivering the photosensitizer. The obtained transparent films presented higher extensibility (elongation at break up to 338.2%) than the pullulan counterparts (6.08%), when stored at 54% of relative humidity, and the corresponding hydrogels a 4-fold higher adhesiveness than commercial hydrogels. These non-cytotoxic adhesives allowed the inactivation (∼5 log reduction), down to the detection limit of the method, of multiresistant strains of Staphylococcus aureus in ex vivo skin samples. Overall, these materials are promising for aPDT in the treatment of resistant skin infections, while being easily removed from the skin.

6.
Environ Res ; 237(Pt 1): 116897, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37598845

ABSTRACT

BACKGROUND: Perfluoroalkyl substances (PFAS) and phthalates are synthetic chemicals widely used in various types of consumer products. There is epidemiological and experimental evidence that PFAS and phthalates may alter thyroid hormone levels; however, studies in children and adolescents are limited. AIM: To investigate the association of exposure to PFAS and phthalate with serum levels of thyroid hormones in European adolescents. METHODS: A cross-sectional study was conducted in 406 female and 327 male adolescents (14-17 years) from Belgium, Slovakia, and Spain participating in the Aligned Studies of the HBM4EU Project (FLEHS IV, PCB cohort, and BEA, respectively). Concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), free thyroxine (FT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) were measured in sera from study participants, and urinary metabolites of six phthalates (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and the non-phthalate plasticizer DINCH® were quantified in spot urine samples. Associations were assessed with linear regression and g-computational models for mixtures. Effect modification by sex was examined. RESULTS: In females, serum PFOA and the PFAS mixture concentrations were associated with lower FT4 and higher FT3 levels; MEP and the sums of DEHP, DiNP, and DINCH® metabolites (∑DEHP, ∑DiNP, and ∑DINCH) were associated with higher FT4; ∑DEHP with lower FT3; and the phthalate/DINCH® metabolite mixture with higher FT4 and lower FT3. In males, PFOA was associated with lower FT4 and the PFAS mixture with higher TSH levels and lower FT4/TSH ratio; MEP and ∑DiNP were associated with higher FT4; and MBzP, ∑DEHP, and the phthalate/DINCH® metabolite mixture with lower TSH and higher FT4/TSH. PFOA, mono-(2-ethyl-5-hydroxyhexyl) phthalate (OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (oxo-MEHP), and monocarboxyoctyl phthalate (MCOP) made the greatest contribution to the mixture effect. CONCLUSIONS: Results suggest that exposure to PFAS and phthalates is associated with sex-specific differences in thyroid hormone levels in adolescents.

7.
ACS Appl Mater Interfaces ; 15(34): 40898-40912, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37584276

ABSTRACT

3D bioprinting is a versatile technique that allows the fabrication of living tissue analogs through the layer-by-layer deposition of cell-laden biomaterials, viz. bioinks. In this work, composite alginate hydrogel-based bioinks reinforced with curcumin-loaded particles of cellulose esters (CEpCUR) and laden with human keratinocytes (HaCaT) are developed. The addition of the CEpCUR particles, with sizes of 740 ± 147 nm, improves the rheological properties of the inks, increasing their shear stress and viscosity, while preserving the recovery rate and the mechanical and viscoelastic properties of the resulting fully cross-linked hydrogels. Moreover, the presence of these particles reduces the degradation rate of the hydrogels from 26.3 ± 0.8% (ALG) to 18.7 ± 1.3% (ALG:CEpCUR_10%) after 3 days in the culture medium. The 3D structures printed with the ALG:CEpCUR inks reveal increased printing definition and the ability to release curcumin (with nearly 70% of cumulative release after 24 h in PBS). After being laden with HaCaT cells (1.2 × 106 cells mL-1), the ALG:CEpCUR bioinks can be successfully 3D bioprinted, and the obtained living constructs show good dimensional stability and high cell viabilities at 7 days post-bioprinting (nearly 90%), confirming their great potential for application in fields like wound healing.


Subject(s)
Bioprinting , Curcumin , Humans , Hydrogels/chemistry , Curcumin/pharmacology , Cellulose , Alginates/chemistry , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Bioprinting/methods , Tissue Engineering/methods
8.
Environ Pollut ; 335: 122214, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37482334

ABSTRACT

Exposure to Perfluoroalkyl acids (PFAS) can impair human reproductive function, e.g., by delaying or advancing puberty, although their mechanisms of action are not fully understood. We therefore set out to evaluate the relationship between serum PFAS levels, both individually and as a mixture, on the Hypothalamic-Pituitary-Gonadal (HPG) axis by analyzing serum levels of reproductive hormones and also kisspeptin in European teenagers participating in three of the HBM4EU Aligned Studies. For this purpose, PFAS compounds were measured in 733 teenagers from Belgium (FLEHS IV study), Slovakia (PCB cohort follow-up), and Spain (BEA study) by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS) in laboratories under the HBM4EU quality assurance quality control (QA/QC) program. In the same serum samples, kisspeptin 54 (kiss-54) protein, follicle-stimulating hormone (FSH), total testosterone (TT), estradiol (E2), and sex hormone-binding globulin (SHBG) levels were also measured using immunosorbent assays. Sex-stratified single pollutant linear regression models for separate studies, mixed single pollutant models accounting for random effects for pooled studies, and g-computation and Bayesian kernel machine regression (BKMR) models for the mixture of the three most available (PFNA, PFOA, and PFOS) were fit. PFAS associations with reproductive markers differed according to sex. Each natural log-unit increase of PFOA, PFNA, and PFOS were associated with higher TT [18.41 (6.18; 32.31), 15.60 (7.25; 24.61), 14.68 (6.18; 24.61), respectively] in girls, in the pooled analysis (all studies together). In males, G-computation showed that PFAS mixture was associated with lower FSH levels [-10.51 (-18.81;-1.36)]. The BKMR showed the same patterns observed in G-computation, including a significant increase on male Kiss-54 and SHBG levels. Overall, effect biomarkers may enhance the current epidemiological knowledge regarding the adverse effect of PFAS in human HPG axis, although further research is warranted.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Female , Humans , Male , Adolescent , Kisspeptins , Bayes Theorem , Gonadal Steroid Hormones , Testosterone , Follicle Stimulating Hormone
9.
Int J Hyg Environ Health ; 252: 114219, 2023 07.
Article in English | MEDLINE | ID: mdl-37451108

ABSTRACT

BACKGROUND: Perfluoroalkyl substances (PFAS) are found in a wide range of consumer products. Exposure to PFAS in children and adolescents may be associated with alterations in thyroid hormones, which have critical roles in brain function. OBJECTIVE: This study investigated the association between plasma concentrations of PFAS and serum levels of total triiodothyronine (T3), free thyroxine (T4), and thyroid-stimulating hormone (TSH) in adolescent males. METHODS: In 2017-2019, 151 boys from the Environment and Childhood (INMA)-Granada birth cohort, Spain, participated in a clinical follow up visit at the age of 15-17 years. Plasma concentrations of ten PFAS (PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFOS, and PFHxS) and serum thyroid hormones were measured in 129 of these boys. Linear regression analysis was performed to determine associations of individual PFAS with total T3, free T4, TSH, and free T4/TSH ratio, and quantile g-computation models were performed to assess the mixture effect. Additional models considered iodine status as effect modifier. RESULTS: PFOS was the most abundant PFAS in plasma (median = 2.22 µg/L), followed by PFOA (median = 1.00 µg/L), PFNA (median = 0.41 µg/L), and PFHxS (median = 0.40 µg/L). When adjusted by confounders (including age, maternal schooling, and fish intake), PFOA and PFUnDA were associated with an increase in free T4 (ß [95% CI] = 0.72 [0.06; 1.38] and 0.36 [0.04; 0.68] pmol/L, respectively, per two-fold increase in plasma concentrations), with no change in TSH. PFOS, the sum of PFOA, PFNA, PFOS, and PFHxS, and the sum of long-chain PFAS were marginally associated with increases in free T4. Associations with higher free T4 and/or total T3 were seen for several PFAS in boys with lower iodine intake (<108 µ/day) alone. Moreover, the PFAS mixture was association with an increase in free T4 levels in boys with lower iodine intake (% change [95% CI] = 6.47 [-0.69; 14.11] per each quartile increase in the mixture concentration). CONCLUSIONS: Exposure to PFAS, considered individually or as a mixture, was associated with an increase in free T4 levels in boys with lower iodine intake. However, given the small sample size, the extent of these alterations remains uncertain.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Iodine , Male , Animals , Thyroid Hormones , Thyrotropin
10.
ACS Appl Mater Interfaces ; 15(21): 25860-25872, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37200222

ABSTRACT

Biopolymeric injectable hydrogels are promising biomaterials for myocardial regeneration applications. Besides being biocompatible, they adjust themselves, perfectly fitting the surrounding tissue. However, due to their nature, biopolymeric hydrogels usually lack desirable functionalities, such as antioxidant activity and electrical conductivity, and in some cases, mechanical performance. Protein nanofibrils (NFs), such as lysozyme nanofibrils (LNFs), are proteic nanostructures with excellent mechanical performance and antioxidant activity, which can work as nanotemplates to produce metallic nanoparticles. Here, gold nanoparticles (AuNPs) were synthesized in situ in the presence of LNFs, and the obtained hybrid AuNPs@LNFs were incorporated into gelatin-hyaluronic acid (HA) hydrogels for myocardial regeneration applications. The resulting nanocomposite hydrogels showed improved rheological properties, mechanical resilience, antioxidant activity, and electrical conductivity, especially for the hydrogels containing AuNPs@LNFs. The swelling and bioresorbability ratios of these hydrogels are favorably adjusted at lower pH levels, which correspond to the ones in inflamed tissues. These improvements were observed while maintaining important properties, namely, injectability, biocompatibility, and the ability to release a model drug. Additionally, the presence of AuNPs allowed the hydrogels to be monitorable through computer tomography. This work demonstrates that LNFs and AuNPs@LNFs are excellent functional nanostructures to formulate injectable biopolymeric nanocomposite hydrogels for myocardial regeneration applications.


Subject(s)
Gelatin , Metal Nanoparticles , Nanogels , Gold , Hyaluronic Acid/chemistry , Antioxidants , Muramidase , Biocompatible Materials/chemistry , Wound Healing , Myocardium , Hydrogels/pharmacology , Hydrogels/chemistry , Tissue Engineering/methods
11.
Chemosphere ; 324: 138350, 2023 May.
Article in English | MEDLINE | ID: mdl-36907483

ABSTRACT

BACKGROUND: Several non-persistent pesticides are endocrine disrupting chemicals and may impact on sexual maturation. OBJECTIVE: To examine the association between urinary biomarkers of non-persistent pesticides and sexual maturation in adolescent males in the Environment and Childhood (INMA) Project. METHODS: The metabolites of several pesticides were measured in spot urine samples collected from 201 boys aged 14-17 years, including: 3,5,6-trichloro-2-pyridinol (TCPy), metabolite of chlorpyrifos; 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy), metabolite of diazinon; malathion diacid (MDA), metabolite of malathion; diethyl thiophosphate (DETP) and diethyl dithiophosphate, non-specific metabolites of organophosphates; 3-phenoxybenzoic acid (3-PBA) and dimethyl cyclopropane carboxylic acid, metabolites of pyrethroids; 1-naphthol (1-NPL), metabolite of carbaryl; and ethylene thiourea (ETU), metabolite of dithiocarbamate fungicides. Sexual maturation was assessed using Tanner stages, self-reported Pubertal Development Scale, and testicular volume (TV). Multivariate logistic regression was employed to examine associations between urinary pesticide metabolites and the odds of being in Tanner stage 5 of genital development (G5) or pubic hair growth (PH5); stage ≥4 of overall pubertal development, gonadarche, and adrenarche; or having mature TV (≥25 mL). RESULTS: DETP concentrations>75th percentile (P75) were associated with lower odds of being in stage G5 (OR = 0.27; 95% CI = 0.10-0.70), detectable TCPy with lower odds of gonadal stage≥4 (OR = 0.50; 95% CI = 0.26-0.96), and intermediate detectable MDA concentrations (

Subject(s)
Chlorpyrifos , Pesticides , Male , Humans , Adolescent , Child , Pesticides/urine , Malathion , Sexual Maturation , Pyridines , Environmental Exposure
12.
Polymers (Basel) ; 15(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904310

ABSTRACT

Nowadays, packaging applications require the use of advanced materials as well as production methods that have a low environmental impact. In this study, a solvent-free photopolymerizable paper coating was developed using two acrylic monomers (2-ethylhexyl acrylate and isobornyl methacrylate). A copolymer, with a molar ratio of 2-ethylhexyl acrylate/isobornyl methacrylate of 0.64/0.36, was prepared and used as the main component of the coating formulations (50 and 60 wt%). A mixture of the monomers with the same proportion was used as a reactive solvent, yielding formulations with 100% solids. The coated papers showed an increase in the pick-up values from 6.7 to 32 g/m2 depending on the formulation used and the number of coating layers (up to two). The coated papers maintained their mechanical properties and presented improved air barrier properties (Gurley's air resistivity of ≈25 s for the higher pick-up values). All the formulations promoted a significant increase in the paper's water contact angle (all higher than 120 °) and a remarkable decrease in their water absorption (Cobb values decrease from 108 to 11 g/m2). The results confirm the potential of these solventless formulations for fabricating hydrophobic papers with potential application in packaging, following a quick, effective, and more sustainable approach.

13.
Sci Total Environ ; 868: 161668, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36657687

ABSTRACT

BACKGROUND: Kisspeptin has been proposed as an effect biomarker to understand the mechanisms by which some environmental chemicals adversely affect the human reproductive system. OBJECTIVE: To ascertain whether kisspeptin serum protein and DNA methylation levels are associated with exposure to several environmental chemicals (individually and as a mixture) and serum reproductive hormone levels in adolescent males. METHODS: Three phenols (bisphenol A [BPA], methyl-paraben [MPB], and benzophenone-3 [BP3]); two toxic metals (arsenic and cadmium); and four metabolites of non-persistent pesticides, including insecticides (2-isopropyl-6-methyl-4-pyrimidinol [IMPy], malathion diacid [MDA], and dimethylcyclopropane carboxylic acid [DCCA]) and fungicides (ethylene thiourea [ETU]) were measured in first-morning urine samples of 133 adolescent males aged 15-17 years from the INMA-Granada cohort. In blood samples collected on the same day, KISS1 gene DNA methylation was measured at four CpGs from the Exon IV, as well as serum levels of kiss54 protein, total testosterone (T), estradiol (E2), sex hormone binding-globulin, dehydroepiandrosterone sulfate, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Multiple linear regression and mixture (quantile g-computation) models were fit. RESULTS: Urinary MDA and DCCA concentrations were associated with higher kiss54 levels [% change (95%CI) for each log-unit increase in concentration = 2.90 (0.32;5.56), and 1.93 (0.45,3.43), respectively]; IMPy with lower DNA methylation percentage at CpG1 and total CpGs [% change (95%CI) = -1.15 (-1.96;-0.33): -0.89 (-1.73;-0.01), respectively]; and BP3 and DCCA with lower total CpGs methylation [-0.53 (-1.04;-0.01) and - 0.69 (-1.37;-0.01), respectively]. The pesticide mixture and the whole chemical mixture were associated with higher kiss54 [% change (95%CI) = 9.09 (3.29;15.21) and 11.61 (3.96;19.82), respectively] and lower methylation levels at several CpGs. Additionally, serum kiss54 in the third tertile was associated with higher LH levels [% change (95%CI) = 28.69 (3.75-59.63)], and third-tertile CpG1, CpG2, and total CpG methylation percentages were associated with lower FSH and E2. CONCLUSION: The findings of the present study and the negative correlation between serum kiss54 levels and KISS1 DNA methylation percentages suggested that kisspeptin may be a promising effect biomarker.


Subject(s)
Kisspeptins , Luteinizing Hormone , Male , Humans , Adolescent , Pilot Projects , Follicle Stimulating Hormone , Testosterone
14.
Environ Pollut ; 316(Pt 2): 120571, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36356884

ABSTRACT

This study assessed cross-sectional associations between urinary metabolites of non-persistent pesticides and pubertal development in boys and girls from urban and rural areas in Spain and examined effect modification by body mass index (BMI). Four metabolites of insecticides (TCPy, metabolite of chlorpyrifos; IMPy, metabolite of diazinon; DETP, non-specific metabolite of organophosphates; 3-PBA, metabolite of pyrethroids) and the metabolite of ethylene-bis-dithiocarbamate fungicides (ETU) were quantified in urine collected in 2010-2016 from 7 to 11-year-old children (606 girls, 933 boys) participating in the INMA Project. Pubertal development was ascertained by Tanner stages and/or parent-reported Pubertal Development Scale (PDS). Associations between pesticide metabolites and odds of being in stage 2+ for breast development (girls), genital development (boys), pubic hair growth (girls and boys), and/or overall puberty onset, gonadarche, and adrenarche (PDS for girls and boys) were examined by mixed-effect logistic regression. Effect modification by BMI was explored by interaction terms and stratified analysis. In girls, DETP and ETU concentrations>75th percentile (P75) were associated with higher odds of overall puberty development (OR [95%CI] = 1.86 [1.07-3.24] and 1.71 [1.03-2.83], respectively, for > P75 vs. undetected concentrations), while ETU > P75 was also associated with higher odds of breast development (OR [95%CI] = 5.55 [2.83-12.91]), particularly in girls with underweight/normal weight (OR [95%CI] = 10.08 [2.62-38.76]). In boys, detection of TCPy (40%) and 3-PBA (34%) was associated with higher odds of genital development (OR [95%CI] = 1.97 [1.08-3.57] and 2.08 [1.15-3.81], respectively), and the association with 3-PBA was observed in boys with overweight/obesity alone. In addition, ETU > P75 was associated with higher odds of genital development in boys with underweight/normal weight (OR [95%CI] = 2.89 [1.08-7.74]) but higher DETP with lower odds of puberty in boys with overweight/obesity (OR [95%CI] = 0.94 [0.89-0.99] per log-unit increase in concentration). Results suggest an association of childhood exposure to ETU and certain insecticides with earlier puberty in girls and boys that may be modified by child BMI.


Subject(s)
Insecticides , Pesticides , Child , Male , Female , Humans , Cross-Sectional Studies , Thinness , Overweight , Obesity
15.
Int J Biol Macromol ; 229: 849-860, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36572084

ABSTRACT

The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G') and loss (G") moduli and the G' recovery capacity of the hydrogels (from 70.05 ± 3.06 % (90:10) to 82.63 ± 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness and stress from 114.02 ± 10.93 Pa (90:10) to 337.16 ± 34.03 Pa (60:40) and from 18.27 ± 1.32 kPa (90:10) to 47.17 ± 3.59 kPa (60:40), respectively. The hydrogels were non-cytotoxic against human keratinocyte cells (HaCaT), with cell viabilities above 70 % for up to 72 h. The hydrogel 60:40 was loaded with HaCaT cells (3 × 106 cells mL-1) and bioprinted. The cell viability was maintained elevated until day 7 (90 ± 3 %) after bioprinting. These results highlight that the combination of these two biopolymers was a good strategy for the development of novel hydrogel-based bioinks for extrusion 3D bioprinting applications.


Subject(s)
Bioprinting , Hydrogels , Humans , Hydrogels/pharmacology , Tissue Engineering/methods , Cellulose/pharmacology , Bioprinting/methods , Printing, Three-Dimensional , Tissue Scaffolds
16.
Environ Pollut ; 319: 120901, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36565913

ABSTRACT

Aluminum (Al), antimony (Sb), and lithium (Li) are relatively common toxic metal(oid)s that can be transferred into breast milk and potentially to the nursing infant. This study assessed concentrations of Al, Sb, and Li in breast milk samples collected from donor mothers and explored the predictors of these concentrations. Two hundred forty-two pooled breast milk samples were collected at different times post-partum from 83 donors in Spain (2015-2018) and analyzed for Al, Sb, and Li concentrations. Mixed-effect linear regression was used to investigate the association of breast milk concentrations of these elements with the sociodemographic profile of the women, their dietary habits and utilization of personal care products (PCPs), the post-partum interval, and the nutritional characteristics of milk samples, among other factors. Al was detected in 94% of samples, with a median concentration of 57.63 µg/L. Sb and Li were detected in 72% and 79% of samples at median concentrations of 0.08 µg/L and 0.58 µg/L, respectively. Concentrations of Al, Sb, and Li were not associated with post-partum time. Al was positively associated with total lipid content of samples, weight change since before pregnancy, and coffee and butter intakes and inversely with meat intake. Li was positively associated with intake of chocolate and use of face cream and eyeliner and inversely with year of sample collection, egg, bread, and pasta intakes, and use of hand cream. Sb was positively associated with fatty fish, yoghurt, rice, and deep-fried food intakes and use of eyeliner and inversely with egg and cereal intakes and use of eyeshadow. This study shows that Al, Sb, and Li, especially Al, are widely present in donor breast milk samples. Their concentrations in the milk samples were most frequently associated with dietary habits but also with the lipid content of samples and the use of certain PCPs.


Subject(s)
Antimony , Milk, Human , Female , Pregnancy , Animals , Lithium , Aluminum , Lipids
17.
Macromol Biosci ; 23(1): e2200323, 2023 01.
Article in English | MEDLINE | ID: mdl-36189897

ABSTRACT

The aim of this study is to prepare dissolvable biopolymeric microneedle (MN) patches composed solely of sodium carboxymethylcellulose (CMC), a water-soluble cellulose derivative with good film-forming ability, by micromolding technology for the transdermal delivery of diclofenac sodium salt (DCF). The MNs with ≈456 µm in height displayed adequate morphology, thermal stability up to 200 °C, and the required mechanical strength for skin insertion (>0.15 N needle-1 ). Experiments in ex vivo abdominal human skin demonstrate the insertion capability of the CMC_DCF MNs up to 401 µm in depth. The dissolution of the patches in saline buffer results in a maximum cumulative release of 98% of diclofenac after 40 min, and insertion in a skin simulant reveals that all MNs completely dissolve within 10 min. Moreover, the MN patches are noncytotoxic toward human keratinocytes. These results suggest that the MN patches produced with CMC are promising biopolymeric systems for the rapid administration of DCF in a minimally invasive manner.


Subject(s)
Carboxymethylcellulose Sodium , Diclofenac , Humans , Diclofenac/pharmacology , Administration, Cutaneous , Skin , Drug Delivery Systems/methods
18.
Bioengineering (Basel) ; 9(12)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36551022

ABSTRACT

Towards the end of 2019 in Wuhan, suspicions of a new dangerous virus circulating in the air began to arise. It was the start of the world pandemic coronavirus disease 2019 (COVID-19). Since then, considerable research data and review papers about this virus have been published. Hundreds of researchers have shared their work in order to achieve a better comprehension of this disease, all with the common goal of overcoming this pandemic. The coronavirus is structurally similar to influenza A. Both are RNA viruses and normally associated with comparable infection symptoms. In this review, different case studies targeting polymeric materials were appraised to highlight them as an indispensable tool to fight these RNA viruses. In particular, the main focus was how polymeric materials, and their versatile features could be applied in different stages of viral disease, i.e., in protection, detection and treatment.

19.
Front Bioeng Biotechnol ; 10: 1059097, 2022.
Article in English | MEDLINE | ID: mdl-36582838

ABSTRACT

Polysaccharides and proteins are extensively used for the design of advanced sustainable materials. Owing to the high aspect ratio and specific surface area, ease of modification, high mechanical strength and thermal stability, renewability, and biodegradability, biopolymeric nanofibrils are gaining growing popularity amongst the catalog of nanostructures exploited in a panoply of fields. These include the nanocomposites, paper and packaging, environmental remediation, electronics, energy, and biomedical applications. In this review, recent trends on the use of cellulose and protein nanofibrils as versatile substrates for the design of high-performance nanomaterials are assessed. A concise description of the preparation methodologies and characteristics of cellulosic nanofibrils, namely nanofibrillated cellulose (NFC), bacterial nanocellulose (BNC), and protein nanofibrils is presented. Furthermore, the use of these nanofibrils in the production of sustainable materials, such as membranes, films, and patches, amongst others, as well as their major domains of application, are briefly described, with focus on the works carried out at the BioPol4Fun Research Group (Innovation in BioPolymer based Functional Materials and Bioactive Compounds) from the Portuguese associate laboratory CICECO-Aveiro Institute of Materials (University of Aveiro). The potential for partnership between both types of nanofibrils in advanced material development is also reviewed. Finally, the critical challenges and opportunities for these biobased nanostructures for the development of functional materials are addressed.

20.
Clin Epigenetics ; 14(1): 186, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36572933

ABSTRACT

OBJECTIVE: To assess the genetic and epigenetic effects promoted by Bisphenol A (BPA) exposure in adolescent males from the Spanish INMA-Granada birth cohort, and in human cells. METHODS: DNA methylation was analysed using MEDIP. Repeat number variation in genomic DNA was evaluated, along with the analysis of H3K4me3 by using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). Analyses were performed with material extracted from whole blood of the adolescents, complemented by in vitro assessments of human (HeLa) cells exposed to 10 nM BPA, specifically, immunofluorescence evaluation of protein levels, gene expression analysis and ChIP‒qPCR analysis. RESULTS: Adolescents in the high urinary BPA levels group presented a higher level of Satellite A (SATA) repetitive region copy numbers compared to those in the low BPA group and a tendency towards increase in telomere length. We also observed decreased DNA methylation at the promoters of the imprinted genes H19, KCNQ1, and IGF2; at LINE1 retroelements; and at the ARID2, EGFR and ESRRA and TERT genes. Genome-wide sequencing revealed increased H3K4me3 occupancy at the promoters of genes encoding histone acetyltransferases, telomeric DNA binding factors and DNA repair genes. Results were supported in HeLa cells exposed to 10 nM BPA in vitro. In accordance with the data obtained in blood samples, we observed higher H3K4me3 occupancy and lower DNA methylation at some specific targets in HeLa cells. In exposed cells, changes in the expression of genes encoding DNA repair factors (ATM, ARID2, TRP53) were observed, and increased expression of several genes encoding telomeric DNA binding factors (SMG7, TERT, TEN1, UPF1, ZBTB48) were also found. Furthermore, an increase in ESR1/ERa was observed in the nuclei of HeLa cells along with increased binding of ESR1 to KAT5, KMT2E and TERF2IP promoters and decreased ESR1 binding at the RARA promoter. The DNA damage marker p53/TP53 was also increased. CONCLUSION: In this pilot study, genome-wide analysis of histone trimethylation in adolescent males exposed to BPA revealed a global impact on the expression of genes encoding telomeric binding proteins and histone acetyltransferase factors with similar results in HeLa cells. Nevertheless, larger studies should confirm our findings.


Subject(s)
DNA Methylation , Histones , Male , Humans , Adolescent , Histones/metabolism , Pilot Projects , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , HeLa Cells , DNA/metabolism , Trans-Activators/genetics , RNA Helicases/genetics , RNA Helicases/metabolism , Carrier Proteins/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...