Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 119(43): 13859-69, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26287794

ABSTRACT

Chlorite dismutase (Cld) catalyzes the reduction of chlorite to chloride and dioxygen. Here, the ligand binding to Cld of Magnetospirillum sp. (MaCld) is investigated with X-ray crystallography and electron paramagnetic resonance (EPR). EPR reveals a large heterogeneity in the structure of wild-type MaCld, showing a variety of low- and high-spin ferric heme forms. Addition of an axial ligand, such as azide or imidazole, removes this heterogeneity almost entirely. This is in line with the two high resolution crystal structures of MaCld obtained in the presence of azide and thiocyanate that show the coordination of the ligands to the heme iron. The crystal structure of the MaCld-azide complex reveals a single well-defined orientation of the azide molecule in the heme pocket. EPR shows, however, a pH-dependent heme structure, probably due to acid-base transitions of the surrounding amino-acid residues stabilizing azide. For the azide and imidazole complex of MaCld, the hyperfine and nuclear quadrupole interactions with the close-by (14)N and (1)H nuclei are determined using pulsed EPR. These values are compared to the corresponding data for the low-spin forms observed in the ferric wild-type MaCld and to existing EPR data on azide and imidazole complexes of other heme proteins.


Subject(s)
Azides/chemistry , Imidazoles/chemistry , Magnetospirillum/enzymology , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Thiocyanates/chemistry , Binding Sites , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Ligands , Models, Molecular , Oxidoreductases/isolation & purification
2.
J Inorg Biochem ; 151: 1-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26218477

ABSTRACT

Chlorite dismutase (Cld) is a b-type heme containing enzyme that catalyzes the reduction of chlorite into chloride plus dioxygen. This enzyme has gained attention because it can be used in the development of bioremediation processes, biosensors, and controlled dioxygen production. In the present work, Cld was purified from Magnetospirillum sp. cells cultured anaerobically with acetate/perchlorate until stationary phase. Biochemical, spectroscopic and X-ray crystallography methods showed that Cld from Magnetospirillum sp. is a ~140 kDa homopentamer comprising ~27.8 kDa monomers. Preliminary X-ray crystallography studies confirmed the quaternary structure and the presence of one b-type heme per monomer. The EPR spectroscopic signature of the as-purified Cld samples is affected by the buffer composition used during the purification. Potassium phosphate buffer is the only buffer that affected neither the spectral nor the kinetic properties of Cld. Kinetic studies in solution revealed that Cld from Magnetospirillum sp. decomposes chlorite at high turnover rates with optimal pH6.0. A temperature below 10 °C is required to avoid enzyme inactivation due to cofactor bleaching during turnover, and to achieve full substrate consumption. Cld kinetic parameters were not affected when kinetic assays were performed in the presence of air or under argon atmosphere, but chloride is a weak mixed inhibitor that modifies the EPR signal of as-prepared samples.


Subject(s)
Magnetospirillum/enzymology , Models, Molecular , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Heme/chemistry , Hydrogen-Ion Concentration , Protein Structure, Tertiary , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...