Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 12547, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-31467360

ABSTRACT

Graphene grown directly on germanium is a possible route for the integration of graphene into nanoelectronic devices as well as it is of great interest for materials science. The morphology of the interface between graphene and germanium influences the electronic properties and has not already been completely elucidated at atomic scale. In this work, we investigated the morphology of the single-layer graphene grown on Ge substrates with different crystallographic orientations. We determined the presence of sinusoidal ripples with a single propagation direction, zig-zag, and could arise due to compressive biaxial strain at the interface generated as a result of the opposite polarity of the thermal expansion coefficient of graphene and germanium. Local density of states measurements on the ripples showed a linear dispersion relation with the Dirac point slightly shifted with respect to the Fermi energy indicating that these out-of-plane deformations were n-doped, while the graphene regions between the highs were undoped.

2.
J Pharm Biomed Anal ; 158: 480-493, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-29960239

ABSTRACT

The determination of kanamycin sulfate was made indirectly by measuring its effect on photoluminescent amino functionalized graphene quantum dots (GQDs-amino) associated with gold nanoparticles (AuNPs) that were produced by the reduction of AuCl4 with NaBH4 in an aqueous dispersion of GQDs-amino (obtained by the pyrolysis of citric acid and glutathione) also containing the cationic surfactant CTAB. The AuNPs-GQDs-amino-CTAB system presents a suppressed photoluminescence that is amplified in the presence of kanamycin. Under optimized experimental conditions, the photoluminescence amplification of the nanomaterial system showed a linear response as a function of kanamycin concentration, covering three orders of magnitude (10-7 to 10-5 mol L-1). The use of solid phase extraction with a cartridge packed with aminoglycoside selective molecularly imprinted polymer ensured selectivity in determinations made on yellow-fever vaccine and veterinary pharmaceutical formulations. The analytical results were statistically similar to those obtained with an HPLC-based fluorescence method (after chemical derivatization). The proposed method is a simple, sensitive and selective approach that does not involve the use of toxic reagents employed for chemical derivatization of aminoglycoside antibiotics.


Subject(s)
Anti-Bacterial Agents/analysis , Biosensing Techniques/methods , Kanamycin/analysis , Preservatives, Pharmaceutical/analysis , Yellow Fever Vaccine/analysis , Biosensing Techniques/instrumentation , Gold/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Quantum Dots/chemistry , Sensitivity and Specificity , Solid Phase Extraction/methods , Yellow Fever Vaccine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...