Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Proteomics ; 169: 143-152, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28634118

ABSTRACT

Proteins and peptides able to resist gastrointestinal digestion and reach the intestinal mucosa have the potential to influence human health. Chickpea (Cicer arietinum L.) seed proteins are able to resist cooking (86.9% total protein) and/or in vitro simulated human digestion (15.9% total protein resists soaking, cooking and digestion with pepsin and pancreatin). To identify and characterize proteins resisting digestion we made use of different MS methodologies. The efficiency of several proteases (trypsin, AspN, chymotrypsin and LysC) was tested, and two technologies were employed (MALDI-MS/MS and LC-nESI-MS/MS). Digestion with trypsin and AspN were most successful for the identification of seed proteins. When analyzed by MALDI- MS/MS, trypsin allowed the identification of at least one protein in 60% of the polypeptide bands, while AspN allows the identification in 48%. The use of LC-nESI-MS/MS, allowed the identification of much more proteins/polypeptides from digested seeds (232 vs 17 using trypsin). The majority of the proteins found to be able to resist simulated digestion were members of the 7S vicilin and 11S legumin seed storage protein classes, which are reported to contain bio-active functions. In addition, we have found proteins that had not yet been described as potentially able to cause an impact on human health. SIGNIFICANCE: This is the first proteomic study to analyze the effect of processing and simulated human gastrointestinal digestion on the proteome of chickpea seed. Chickpea is reported to have anti-nutritional effects as well as nutraceutical properties, so the identification and characterization of the proteins able to resist digestion is crucial to understand the targets underlying such properties.


Subject(s)
Cicer/chemistry , Digestion , Proteome/analysis , Seeds/chemistry , Cicer/metabolism , Humans , Peptide Hydrolases/metabolism , Plant Proteins/analysis , Plant Proteins/metabolism , Proteome/metabolism , Seed Storage Proteins/metabolism , Seeds/metabolism , Legumins
2.
J Clin Invest ; 65(5): 1141-4, 1980 May.
Article in English | MEDLINE | ID: mdl-6767739

ABSTRACT

During the large epidemic of serogroups A and C meningococcal disease in Brazil, we studied the immunologic response to meningococcal polysaccharide vaccine in infants born to women vaccinated during pregnancy. Radioimmunoassay serum levels against serogroups A and C polysaccharide were more than threefold higher in vaccinated than in unvaccinated women at delivery. Cord blood levels were also threefold or higher in infants whose mothers were vaccinated while pregnant compared to infants born of unvaccinated mothers. Within 3 mo, the infants' A and C serum antibody levels declined by approximately 80%. When vaccinated at about 6 mo of age, infants born of vaccinated mothers had antibody responses to A and C polysaccharide vaccines indistinguishable from those born of unvaccinated mothers. The response did not vary with the trimester of vaccination. We conclude that the vaccination of pregnant women with groups A and C meningococcal polysaccharide vaccine does not produce immune tolerance in the subsequently born infants.


Subject(s)
Antibodies, Bacterial/analysis , Bacterial Vaccines/immunology , Neisseria meningitidis/immunology , Pregnancy , Vaccination , Female , Gestational Age , Humans , Infant , Infant, Newborn , Meningitis, Meningococcal/prevention & control , Serotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...