Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Proteomics ; 233: 104080, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33338687

ABSTRACT

Dental pulp is a specialized tissue able to respond to infectious processes. Nevertheless, infection progress and root canal colonization trigger an immune-inflammatory response in tooth-surrounding tissues, leading to apical periodontitis and bone tissue destruction, further contributing to tooth loss. In order to shed some light on the effects of IL-4 on periradicular pathology development modulation, microtomographic, histological and proteomic analyses were performed using 60 mice, 30 wild type and 30 IL-4-/-. For that, 5 animals were used for microtomographic and histological analysis, and another 5 for proteomic analysis for 0, 7 and 21 days with/without pulp exposure. The periapical lesions were established in WT and IL-4-/- mice without statistical differences in their volume, and the value of p < 0.05 was adopted as significant in microtomographic and histological analyses. Regarding histological analysis, IL-4-/- mice show aggravation of pulp inflammation compared to WT. By using proteomic analysis, we have identified 32 proteins with increased abundance and 218 proteins with decreased abundance in WT animals after 21 days of pulp exposure, compared to IL-4-/- animals. However, IL-4-/- mice demonstrated faster development of apical periodontitis. These animals developed a compensatory mechanism to overcome IL-4 absence, putatively based on the identification of upregulated proteins related to immune system signaling pathways. Significance: IL-4 might play a protective role in diseases involving bone destruction and its activity may contribute to host protection, mainly due to its antiosteoclastogenic action.


Subject(s)
Interleukin-4 , Periapical Periodontitis , Animals , Inflammation , Mice , Proteomics
2.
Clin Oral Investig ; 25(6): 3623-3632, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33200281

ABSTRACT

OBJECTIVES: In order to evaluate host defense peptides (HDPs) HHC-10 and synoeca-MP activity in in vitro osteoclastogenesis process and in vivo induced apical periodontitis, testing the effect of molecules in the inflammatory response and in apical periodontitis size/volume after root canal treatment. MATERIALS AND METHODS: In vitro osteoclastogenesis was assessed on bone marrow cell cultures extracted from mice, while in vivo endodontic treatment involved rats treated with Ca(OH)2 or HDPs. In vitro osteoclasts were subjected to TRAP staining, and in vivo samples were evaluated by radiographic and tomographic exams, as well as histologic analysis. RESULTS: None of the substances downregulated the in vitro osteoclastogenesis. Nevertheless, all treatments affected the average of apical periodontitis size in rats, although only teeth treated with HDPs demonstrated lower levels of the inflammatory process. These results demonstrated the in vivo potential of HDPs. Radiographic analysis suggested that HHC-10 and synoeca-MP-treated animals presented a similar lesion size than Ca(OH)2-treated animals after 7-day of endodontic treatment. However, tomography analysis demonstrated smaller lesion volume in synoeca-MP-treated animals than HHC-10 and Ca(OH)2-treated animals, after 7 days. CONCLUSIONS: These molecules demonstrated an auxiliary effect in endodontic treatment that might be related to its immunomodulatory ability, broad-spectrum antimicrobial activity, and possible induction of tissue repair at low concentrations. These results can encourage further investigations on the specific mechanisms of action in animal models to clarify the commercial applicability of these biomolecules for endodontic treatment. CLINICAL SIGNIFICANCE: HDPs have the potential to be adjuvant substances in endodontic therapy due to its potential to reduce inflammation in apical periodontitis.


Subject(s)
Antimicrobial Cationic Peptides , Periapical Periodontitis , Animals , Inflammation , Mice , Periapical Periodontitis/diagnostic imaging , Periapical Periodontitis/drug therapy , Rats , Root Canal Therapy , Wound Healing
3.
Cytokine ; 111: 309-316, 2018 11.
Article in English | MEDLINE | ID: mdl-30269027

ABSTRACT

Hospital infections allied to bacterial resistance to antibiotics have become a major worldwide problem. In this context, antimicrobial peptides (AMPs) are presented as an alternative in the control of these resistant organisms. Besides antimicrobial effects, these molecules play a crucial role in immunity by acting as immunomodulators. These peptides can activate inflammatory cells to produce pro- and anti-inflammatory mediators. In this study we will show the activity against multi-drug resistant bacteria (MDRB) of two cathelicidins from South American pit vipers Bothrops atrox and Crotalus durissus terrificus, named batroxicidin and crotalicidin. It was observed that both peptides showed activity against MDRB and presented no hemolytic or cytotoxic activity. In addition, the ability of peptides to modulate the production of cytokines TNF-α, IL-10 and IL-6 was analyzed using Raw 264.7 cells in the presence of IFN-γ stimuli, and multi-resistant E. coli and K. pneumoniae antigens. An up-expression or down-expression of TNF-α, as well as the IL-10 mediator, was observed. The cytokine IL-6, on the other hand, presented only a down-regulation for Raw 264.7 cell groups. In conclusion, the results demonstrate that both peptides presented a predominantly proinflammatory characteristic to the inflammatory mediators dosed. Overall, even presenting a proinflammatory characteristic, these peptides are still promising for future research and development of new potential antimicrobial molecules.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Bacteria/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Drug Resistance, Multiple, Bacterial/drug effects , Mice , RAW 264.7 Cells
4.
Cytokine ; 107: 18-25, 2018 07.
Article in English | MEDLINE | ID: mdl-29398279

ABSTRACT

Diabetes mellitus (DM) is a metabolic disorder that results in the impairment of the metabolism of carbohydrates, proteins and lipids. It can give rise to various complications, mainly caused by chronic exposure of cells to high glucose concentrations, including changes in the immune response processes. The aim of this study was to verify the chemokine and cytokines production profile in the presence of different glucose concentrations and infection/inflammatory stimuli. To this end, cell viability and the production of chemokines, cytokines and nitric oxide (NO) were analyzed in RAW 264.7 cell culture. Results demonstrated that there was no change in cell viability after 6, 24 and 72 h. Different stimuli were unable to modify the monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-α production. Groups stimulated with lipopolysaccharides (LPS) and LPS and recombinant interferon (rIFN)-γ down-regulated interleukin (IL)-1α, IL-10 and IL-12 and up-regulated IL-6 production. NO production maintained a pattern of increase, according to the increase in glucose concentrations, reaching its peak at 72 h. In summary, the results demonstrated that high glucose concentrations alone may be sufficient to alter the in vitro mediators' production of RAW 264.7 cells.


Subject(s)
Cytokines/metabolism , Glucose/pharmacology , Inflammation Mediators/metabolism , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Animals , Cell Survival/drug effects , Chemokine CCL2/metabolism , Dose-Response Relationship, Drug , Macrophages/metabolism , Mice , Nitric Oxide/metabolism , RAW 264.7 Cells , Time Factors
5.
Peptides ; 95: 16-24, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28712894

ABSTRACT

Endodontic treatment is mainly based on root canal disinfection and its failure may be motivated by microbial resistance. Endodontic therapy can be benefitted by host defense peptides (HDPs), which are multifunctional molecules that act against persistent infection and inflammation. This study aimed to evaluate the antimicrobial, cytotoxic and immunomodulatory activity of several HDPs, namely clavanin A, clavanin A modified (MO) and LL-37, compared to intracanal medication Ca(OH)2. HDPs and Ca(OH)2 were evaluated by: (1) antimicrobial assays against Candida albicans and Enterococcus faecalis, (2) cytotoxicity assays and (3) cytokine tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, interleukin (IL)-1α, IL-6, IL-10 and IL-12 and nitric oxide (NO) production by RAW 264.7 cells incubated with or without heat-killed (HK) C. albicans or E. faecalis combined or not with interferon-γ. The minimum inhibitory concentration (MIC) was established only for E. faecalis (LL-37, 57µM). Considering cytotoxicity, clavanin MO was able to reduce cell viability in many groups and demonstrated lowest LC50. The Ca(OH)2 up-regulated the production of MCP-1, TNF-α, IL-12 and IL-6 and down-regulated IL-1α, IL-10 and NO. Clavanins up-regulated the TNF-α and NO and down-regulated IL-10 production. LL-37 demonstrated up-regulation of IL-6 and TNF-α production and down-regulation in IL-10 and NO production. In conclusion, LL-37 demonstrated better antibacterial potential. In addition, Ca(OH)2 demonstrated a proinflammatory response, while the HDPs modulated the inflammatory response from non-interference with the active cytokines in the osteoclastogenesis process, probably promoting the health of periradicular tissues.


Subject(s)
Antimicrobial Cationic Peptides/administration & dosage , Blood Proteins/administration & dosage , Infections/drug therapy , Inflammation/drug therapy , Peptides/administration & dosage , Animals , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Blood Proteins/chemistry , Candida albicans/drug effects , Candida albicans/pathogenicity , Humans , Infections/microbiology , Infections/pathology , Inflammation/pathology , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-10 , Mice , Nitric Oxide/genetics , Nitric Oxide/metabolism , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Cathelicidins
6.
Article in English | MEDLINE | ID: mdl-28559266

ABSTRACT

Fungal Candida species are commensals present in the mammalian skin and mucous membranes. Candida spp. are capable of breaching the epithelial barrier of immunocompromised patients with neutrophil and cell-mediated immune dysfunctions and can also disseminate to multiple organs through the bloodstream. Here we examined the action of innate defense regulator 1018 (IDR-1018), a 12-amino-acid-residue peptide derived from bovine bactenecin (Bac2A): IDR-1018 showed weak antifungal and antibiofilm activity against a Candida albicans laboratory strain (ATCC 10231) and a clinical isolate (CI) (MICs of 32 and 64 µg · ml-1, respectively), while 8-fold lower concentrations led to dissolution of the fungal cells from preformed biofilms. IDR-1018 at 128 µg · ml-1 was not hemolytic when tested against murine red blood cells and also has not shown a cytotoxic effect on murine monocyte RAW 264.7 and primary murine macrophage cells at the tested concentrations. IDR-1018 modulated the cytokine profile during challenge of murine bone marrow-derived macrophages with heat-killed C. albicans (HKCA) antigens by increasing monocyte chemoattractant protein 1 (MCP-1) and interleukin-10 (IL-10) levels, while suppressing tumor necrosis factor alpha (TNF-α), IL-1ß, IL-6, and IL-12 levels. Mice treated with IDR-1018 at 10 mg · kg-1 of body weight had an increased survival rate in the candidemia model compared with phosphate-buffered saline (PBS)-treated mice, together with a diminished kidney fungal burden. Thus, IDR-1018 was able to protect against murine experimental candidemia and has the potential as an adjunctive therapy.


Subject(s)
Antifungal Agents/therapeutic use , Antimicrobial Cationic Peptides/therapeutic use , Biofilms/drug effects , Candida albicans/drug effects , Candidemia/drug therapy , Candidemia/prevention & control , Immunologic Factors/therapeutic use , Animals , Candida albicans/immunology , Candida albicans/isolation & purification , Cell Line , Chemokine CCL2/immunology , Disease Models, Animal , Interleukin-10/immunology , Interleukin-12 Subunit p35/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Macrophages/drug effects , Mice , Microbial Sensitivity Tests , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism
7.
J Proteomics ; 131: 8-16, 2016 Jan 10.
Article in English | MEDLINE | ID: mdl-26459402

ABSTRACT

Bone resorption is an important factor in bone homeostasis and imbalance can cause several diseases. In osteoimmunology, IL-4 has been described as an important factor in promoting M2 macrophage profile. In order to shed some light on the effect of IL-4 on osteoclast precursors in the presence of RANKL, cytokines and nitric oxide (NO) production and the proteomic profile were analyzed. The presence of IL-4 in in vitro osteoclastogenesis provides production of TNF-α, IL-1α, IL-1ß, IL-10 and IL-12 at basal cell levels. Regarding NO production, IL-4 was sufficient to increase the basal NO levels. Proteomic analyses identified 877 global proteins. IL-4 in in vitro RANKL-mediated osteoclastogenesis leads to the expression of 118 proteins. The presence of rIL-4 in in vitro rRANKL-mediated-osteoclastogenesis downregulated this process. However, the proteomics findings in the osteoclastogenesis demonstrated a much greater effect on osteoclast precursor cells than on RANKL-differentiated osteoclasts. These results suggest that the main effect of IL-4 in pre-osteoclast cells leads to a M2 macrophage activation, and this probably contributed to a reduction in osteoclastogenesis when both stimuli were used. This study noticed that IL-4 plays an important regulatory role in bone homeostasis due to its suppressive potential of precursor osteoclast cells.


Subject(s)
Cell Survival/immunology , Chromatography, Liquid/methods , Interleukin-4/immunology , Mass Spectrometry/methods , Osteoclasts/immunology , RANK Ligand/immunology , Animals , Down-Regulation/immunology , Mice , Osteoclasts/pathology , Proteome/immunology , RAW 264.7 Cells
8.
J Cell Physiol ; 228(12): 2271-84, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24037769

ABSTRACT

Despite all the dental information acquired over centuries and the importance of proteome research, the cross-link between these two areas only emerged around mid-nineties. Proteomic tools can help dentistry in the identification of risk factors, early diagnosis, prevention, and systematic control that will promote the evolution of treatment in all dentistry specialties. This review mainly focuses on the evolution of dentistry in different specialties based on proteomic research and how these tools can improve knowledge in dentistry. The subjects covered are an overview of proteomics in dentistry, specific information on different fields in dentistry (dental structure, restorative dentistry, endodontics, periodontics, oral pathology, oral surgery, and orthodontics) and future directions. There are many new proteomic technologies that have never been used in dentistry studies and some dentistry areas that have never been explored by proteomic tools. It is expected that a greater integration of these areas will help to understand what is still unknown in oral health and disease.


Subject(s)
Dentistry/methods , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Animals , Dental Care/methods , Humans
9.
Prep Biochem Biotechnol ; 41(3): 236-42, 2011.
Article in English | MEDLINE | ID: mdl-21660863

ABSTRACT

Inductively coupled plasma-mass spectrometry (ICP-MS) is a sensitive analytical method to detect the total concentrations of elements in biological samples, but it is unable to identify molecules that can bind to metals, and for this reason it is vital to combine this method's use with other biochemical techniques. Therefore, in order to identify elements complexed to specific proteins, a very relevant combination of bidimensional electrophoresis followed by ICP-MS was used. Protein spots from gels were excised and submitted directly to element detection, a method not reported before. This report focused on the use of plasma from people with laryngeal carcinoma. Most elements were below detection level, with only Cr and Pb being observed in all samples. Although the relationship between metals and laryngeal cancer was not conclusive, it is possible to affirm that the methodology utilized here is successful and has the advantage of determining to which proteins the elements bind.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/methods , Laryngeal Neoplasms/chemistry , Mass Spectrometry/methods , Plasma/chemistry , Proteins/analysis , Trace Elements/analysis , Trace Elements/blood , Humans , Metals/analysis , Metals/blood , Plasma/metabolism , Proteins/chemistry , Proteomics/methods
10.
Cancer Immunol Immunother ; 59(1): 173-81, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19629479

ABSTRACT

Laryngeal cancer is a significant disease worldwide, which presents an increasing incidence. Two contrasting ideas of the immune system role during cancer development are accepted: (1) it fights tumor cells, and (2) it aids tumor progression. Thus, there is no clear understanding about the immune response in laryngeal cancer. Furthermore, since tobacco is the main cause of laryngeal cancer and it contains various carcinogenic components, including metallic elements, these may play a role on cancer development. Plasmas of patients with laryngeal cancer and of healthy smokers were evaluated by 2D gel electrophoresis and mass spectrometry. Proteins were detected on every gel around pH 4.0-10.0 from molecular mass of 10-60 kDa. Few differences were found among cancer and control patients. However, three spots gathered between pI 7.3 and 7.6 with different molecular masses appeared exclusively in cancer profiles. From ten spots identified, six correspond to immune system components, including the three differential ones. The latter were observed only in cancer patients. The presence of several trace elements in the identified proteins was determined by inductively coupled plasma mass spectrometry, where chromium was increased in all proteins analyzed from patients with cancer. This study reinforces the importance of the immune response as target in the understanding and treatment of laryngeal cancer and the possibility that chromium is important in the carcinogenic progress.


Subject(s)
Biomarkers, Tumor/blood , Blood Proteins/metabolism , Carcinoma, Squamous Cell/blood , Laryngeal Neoplasms/blood , Proteome/metabolism , Trace Elements/blood , Electrophoresis, Gel, Two-Dimensional , Humans , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...