Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 15: 1152562, 2023.
Article in English | MEDLINE | ID: mdl-37255534

ABSTRACT

Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes. Comparative analyses of mouse models for Fragile X syndrome (Fmr1 knockout), cortical dysplasia focal epilepsy syndrome (Cntnap2 knockout), PTEN hamartoma tumor syndrome (Pten haploinsufficiency), ANKS1B syndrome (Anks1b haploinsufficiency), and idiopathic autism (BTBR+) revealed several common altered cellular and molecular pathways at the synapse, including changes in oxidative phosphorylation, and Rho family small GTPase signaling. Functional validation of one of these aberrant pathways, Rac1 signaling, confirms that the ANKS1B model displays altered Rac1 activity counter to that observed in other models, as predicted by the bioinformatic analyses. Overall similarity analyses reveal clusters of synaptic profiles, which may form the basis for molecular subtypes that explain genetic heterogeneity in ASD despite a common clinical diagnosis. Our results suggest that ASD-linked susceptibility genes ultimately converge on common signaling pathways regulating synaptic function and propose that these points of convergence are key to understanding the pathogenesis of this disorder.

2.
Neurobiol Aging ; 123: 49-62, 2023 03.
Article in English | MEDLINE | ID: mdl-36638681

ABSTRACT

The investigation of neurobiological and neuropathological changes that affect synaptic integrity and function with aging is key to understanding why the aging brain is vulnerable to Alzheimer's disease. We investigated the cellular characteristics in the cerebral cortex of behaviorally characterized marmosets, based on their trajectories of cognitive learning as they transitioned to old age. We found increased astrogliosis, increased phagocytic activity of microglial cells and differences in resting and reactive microglial cell phenotypes in cognitively impaired compared to nonimpaired marmosets. Differences in amyloid beta deposition were not related to cognitive trajectory. However, we found age-related changes in density and morphology of dendritic spines in pyramidal neurons of layer 3 in the dorsolateral prefrontal cortex and the CA1 field of the hippocampus between cohorts. Overall, our data suggest that an accelerated aging process, accompanied by neurodegeneration, that takes place in cognitively impaired aged marmosets and affects the plasticity of dendritic spines in cortical areas involved in cognition and points to mechanisms of neuronal vulnerability to aging.


Subject(s)
Amyloid beta-Peptides , Callithrix , Animals , Brain , Neurons , Aging/physiology
3.
Am J Primatol ; 83(11): e23299, 2021 11.
Article in English | MEDLINE | ID: mdl-34255875

ABSTRACT

While humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes. We present a comparative overview of existing neuropathologic observations across the primate order, including classic age-related changes such as cell loss, amyloid deposition, amyloid angiopathy, and tau accumulation. We also review existing cellular and ultrastructural data on neuronal changes, such as dendritic attrition and spine alterations, synaptic loss and pathology, and axonal and myelin pathology, and discuss their repercussions on cellular and systems function and cognition.


Subject(s)
Aging , Brain/pathology , Primates , Alzheimer Disease , Animals , Cerebral Amyloid Angiopathy
4.
Am J Primatol ; 83(11): e23271, 2021 11.
Article in English | MEDLINE | ID: mdl-34018622

ABSTRACT

Age-related cognitive decline has been extensively studied in humans, but the majority of research designs are cross-sectional and compare across younger and older adults. Longitudinal studies are necessary to capture variability in cognitive aging trajectories but are difficult to carry out in humans and long-lived nonhuman primates. Marmosets are an ideal primate model for neurocognitive aging as their naturally short lifespan facilitates longitudinal designs. In a longitudinal study of marmosets tested on reversal learning starting in middle-age, we found that, on average, the group of marmosets declined in cognitive performance around 8 years of age. However, we found highly variable patterns of cognitive aging trajectories across individuals. Preliminary analyses of brain tissues from this cohort also show highly variable degrees of neuropathology. Future work will tie together behavioral trajectories with brain pathology and provide a window into the factors that predict age-related cognitive decline.


Subject(s)
Aging , Callithrix , Animals , Cross-Sectional Studies , Longevity , Longitudinal Studies
5.
Eur J Pharmacol ; 883: 173362, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32663544

ABSTRACT

Neurexins (NRXNs) are cell-adhesion molecules important in the formation and remodeling of neural circuits. It has been shown that aversive environmental stimuli can affect the expression pattern of Neurexin genes (Nrxns) impacting the regulation of synaptic strength. Accumulated evidence suggests that, after chronic exposure to psychological stress, the triggered changes in gene expression and splicing patterns of Nrxns may be involved in aversive conditioning. Previously, we have demonstrated that a novel treatment using dietary phytochemicals can modulate the response to chronic variable stress (CVS) in mice. Here, we aimed to further investigate the long-term plasticity changes after CVS by focusing on the regulation of NRXNs at synapses. We found that CVS differentially triggers the region-specific gene expression of Nrxns in mice Nucleus Accumbens (NAc) and Hippocampus (HIPP). The prophylactic treatment with the combination of two phytochemicals dihydrocaffeic acid (DHCA) and Malvidin-3-O-glucoside (Mal-gluc) differentially modulated the stress-induced effects on Nrxn1 and 3 mRNA expression in these brain areas and promoted the alternative splicing of Nrxn3 in HIPP. Overall, our data supports the prophylactic effect of dietary phytochemicals in the restoration of stress-induced plasticity changes in mouse brain. By intervening in activity-dependent plasticity at synapses, these compounds may attenuate the effects of chronic aversive conditioning. We propose that an early therapeutic intervention may help with disorders of negative affect, such as depression or post-traumatic stress disorder. Our future studies will address how DHCA/Mal-gluc might serve as a potential complement for current therapies in depression and other mood disorders.


Subject(s)
Alternative Splicing/drug effects , Anthocyanins/pharmacology , Brain/drug effects , Caffeic Acids/pharmacology , Calcium-Binding Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Neurons/drug effects , Phytochemicals/pharmacology , Stress, Psychological/drug therapy , Animals , Behavior, Animal/drug effects , Brain/metabolism , Calcium-Binding Proteins/genetics , Chronic Disease , Disease Models, Animal , Drug Therapy, Combination , Female , Male , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Neural Cell Adhesion Molecules/genetics , Neuronal Plasticity/drug effects , Neurons/metabolism , Stress, Psychological/genetics , Stress, Psychological/metabolism , Stress, Psychological/psychology , Synapses/drug effects , Synapses/metabolism
6.
Arch Biochem Biophys ; 635: 74-86, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29106904

ABSTRACT

Prothymosin α (ProTα) is an acidic protein with a nuclear role related to the chromatin activity through its interaction with histones in mammalian cells. ProTα acts as an anti-apoptotic factor involved in the control of the apoptosome activity in the cytoplasm, however the mechanisms underlying this function are still known. ProTα shares similar biological functions with acidic nuclear-cytoplasmic shuttling proteins included in SET and ANP32 family members. Using affinity chromatography, co-immunoprecipitation and chemical cross-linking, we demonstrate that ProTα interacts with SET, ANP32A and ANP32B proteins. The study by mass spectrometry of the complexes stabilized by chemical cross-linking showed that associations of ProTα consist of six highly acidic ProTα-complexes, which corresponds to differentiated interactions of ProTα either with SET or ANP32 proteins. The presence in the ProTα-complexes of cytoplasmic proteins involved in membrane remodeling and proteins implicated in the mitochondrial permeability, seems to indicate that they could be related to a cytoplasmic-mitochondrial activity. According to the cellular function of the characterized targets of ProTα, and the evolution in the composition of the diverse ProTα-complexes when proliferation activity was reduced or apoptosis induced, leads to hypothesized that ProTα interactions might be related to the proliferation activity and control of the cell survival.


Subject(s)
Cell Survival/physiology , Cytoplasm/metabolism , Histone Chaperones/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/metabolism , Nuclear Proteins/metabolism , Protein Precursors/metabolism , Thymosin/analogs & derivatives , Transcription Factors/metabolism , Cell Proliferation/physiology , DNA-Binding Proteins , Humans , Jurkat Cells , Protein Interaction Mapping , RNA-Binding Proteins , Signal Transduction/physiology , Thymosin/metabolism
7.
J Neuroimmune Pharmacol ; 9(5): 654-67, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25104570

ABSTRACT

Latrunculin A microperfusion in rat hippocampus has shown to be an effective model of acute and chronic seizures for neurochemical studies. The intervention over early synaptic plasticity changes after the epileptogenesis onset represents a big challenge on the design of a suitable therapy to impair the epilepsy development. We previously suggested that receptor location might be essential for controlling neuronal excitability, and that disruption of local cytoskeletal dynamics followed by drastic changes in the synaptic/extrasynaptic ratio of NMDA, AMPA receptors and their subsequent downstream signalling may play an important role in the pathogenesis of seizures. In the present study, we performed a pharmacological intervention in the Latrunculin model by using Ascomicin (ASC) and Phenytoin (PHT). We pointed out the inhibitory action of ASC over the protein phosphatase 2B (PP2B). PP2B pathological mechanism involves changes in actin cytoskeleton and showed to avoid those subsequent changes previously observed in PSD components. On the contrary, PHT didn't seem to modify the F-actin depolymerization process induced, showing a similar redistribution pattern from the PSD towards the extrasynaptic site of several molecular components with more or less dependence on actin for their location, including glutamate receptors. Overall, we propose that the early intervention over changes on the synapse during the epileptogenic process might represent the best approach to avoid the onset of chronic refractory seizures our model. On this regard, the therapeutic potential of ASC, FK506 and derivatives should be further explored as a possible tool in the intervention over epilepsy and other brain diseases.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/toxicity , Calcineurin Inhibitors/administration & dosage , Epilepsy/prevention & control , Hippocampus/drug effects , Microdialysis , Tacrolimus/analogs & derivatives , Thiazolidines/toxicity , Animals , Epilepsy/chemically induced , Epilepsy/metabolism , Hippocampus/metabolism , Infusion Pumps , Male , Microdialysis/methods , Rats , Rats, Sprague-Dawley , Tacrolimus/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...