Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 135(1): 424-35, 2013 Jan 09.
Article in English | MEDLINE | ID: mdl-23259753

ABSTRACT

Cp*W(O)(2)(CH(2)SiMe(3)) (1) (Cp* = η(5)-pentamethylcyclopentadienyl) reacts with oxygen atom donors (e.g., H(2)O(2), PhIO, IO(4)(-)) in THF/water to produce TMSCH(2)OH (TMS = trimethylsilyl). For the reaction of 1 with IO(4)(-), the proposed pathway for alcohol formation involves coordination of IO(4)(-) to 1 followed by concerted migration of the -CH(2)TMS ligand to the coordinated oxygen of IO(4)(-) with concomitant dissociation of IO(3)(-) to produce Cp*W(O)(2)(OCH(2)SiMe(3)) (3), which undergoes protonolysis to yield free alcohol. In contrast to the reaction with IO(4)(-), the reaction of 1 with H(2)O(2) results in the formation of the η(2)-peroxo complex Cp*W(O)(η(2)-O(2))(CH(2)SiMe(3)) (2). In the presence of acid (HCl) or base (NaOH), complex 2 produces TMSCH(2)OH. The conversion of 2 to TMSCH(2)OH catalyzed by Brønsted acid is proposed to occur through protonation of the η(2)-peroxo ligand, which facilitates the transfer of the -CH(2)TMS ligand to a coordinated oxygen of the η(2)-hydroperoxo ligand. In contrast, the hydroxide promoted conversion of 2 to TMSCH(2)OH is proposed to involve hydroxide coordination, followed by proton transfer from the hydroxide ligand to the peroxide ligand to yield a κ(1)-hydroperoxide intermediate. The migration of the -CH(2)TMS ligand to the coordinated oxygen of the κ(1)-hydroperoxo produces an alkoxide complex, which undergoes protonolysis to yield free alcohol.


Subject(s)
Carbon/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Tungsten/chemistry , Molecular Structure , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...