Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Microbiol Resour Announc ; 13(7): e0042224, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38832805

ABSTRACT

Here, we report 27 metagenome-assembled bacterial genomes (MAGs) from litter samples of a secondary forest located in Brazil over an Amazonian Dark Earth pool. The data set includes members from the phyla Pseudomonadata (14 MAGs), Actinomycetota (7 MAGs), Bacteroidota (4 MAGs), Bacillota (1 MAG), and Bdellovibrionota (1 MAG).

2.
J Clin Med ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930099

ABSTRACT

Background and Objectives: Management of acetabular fractures is aimed at anatomically reducing and fixing all displaced or unstable fractures, as the accuracy of fracture reduction has been demonstrated to strongly correlate with clinical outcomes. However, there is a noticeable gap in the literature concerning the perioperative and postoperative care of patients with acetabular fractures, which ultimately can be potential risk factors for adverse outcomes and permanent disabilities. This study aimed to systematically review the available literature regarding rehabilitation practices, including weight-bearing protocols, across time points in surgically treated acetabular fracture patients and correlate these practices with functional outcomes. Methods: We systematically reviewed the Medline and PubMed databases and the Cochrane Central Register of Controlled Trials in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The inclusion criteria were studies with adult patients (19+ years), publications from the last 10 years, articles focusing on rehabilitation or mentioning any aspect related to rehabilitation (such as weight-bearing or muscle training), and describing the surgical management of acute, isolated acetabulum fractures. Specific information was collected, including the fracture classification, time to surgery, surgical approach, surgical time, blood loss, fixation strategy, quality of reduction, postoperative rehabilitation protocol, complication rate, type(s) of complication, and outcome measurement(s). The choice(s) of surgical approach, surgical time, blood loss, and fixation strategy were stratified based on the fracture classification. The complication rate and type(s) of complication were calculated for all studies. Fractures were classified based on the Letournel classification. Results: A total of 494 articles were identified from the initial search, of which 22 (1025 patients) were included in the final review. The most common rehabilitation protocol favored isometric quadriceps and abductor strengthening exercises starting on the first postoperative day, with passive hip movement at 1-3 days postoperatively and active hip movement ranging from the first postoperative day to 4 weeks postoperatively. Partial weight-bearing with a walker or a pair of crutches was permitted from 1 to 12 weeks after surgery, and full weight-bearing was allowed depending on the patient's general condition and fracture healing state (generally at the end of 3 months). In only three studies did the patients start bearing weight in the early postoperative period (≤1 week). Meta-regression analysis was not performed due to the discrepancy between studies that reported a weight-bearing protocol ≤1 week and >1 week postoperatively. Conclusions: Our study suggests that an accelerated postoperative rehabilitation protocol, including early permissive weight-bearing, does not appear to increase the risk of loss of reduction or the rate of complications after surgical treatment of acetabular fractures. However, a proper meta-analysis was not possible, and the heterogeneity of the included studies did not allow us to conclude anything about the potential biomechanical and clinical benefits nor the negative effects related to this rehabilitation regimen in terms of functional results. There is an inconsistent use of PROMs for objectively calculating the effect size of the accelerated protocol compared with restricted weight-bearing regimes. We pose the need for higher-level evidence to proof our hypothesis.

3.
J Appl Oral Sci ; 32: e20230458, 2024.
Article in English | MEDLINE | ID: mdl-38922241

ABSTRACT

OBJECTIVE: This study compared three protocols for developing artificial white spot lesions (WSL) using biofilm models. METHODOLOGY: In total, 45 human enamel specimens were sterilized and allocated into three groups based on the biofilm model: Streptococcus sobrinus and Lactobacillus casei (Ss+Lc), Streptococcus sobrinus (Ss), or Streptococcus mutans (Sm). Specimens were incubated in filter-sterilized human saliva to form the acquired pellicle and then subjected to the biofilm challenge consisting of three days of incubation with bacteria (for demineralization) and one day of remineralization, which was performed once for Ss+Lc (four days total), four times for Ss (16 days total), and three times for Sm (12 days total). After WSL creation, the lesion fluorescence, depth, and chemical composition were assessed using Quantitative Light-induced Fluorescence (QLF), Polarized Light Microscopy (PLM), and Raman Spectroscopy, respectively. Statistical analysis consisted of two-way ANOVA followed by Tukey's post hoc test (α=0.05). WSL created using the Ss+Lc protocol presented statistically significant higher fluorescence loss (ΔF) and integrated fluorescence (ΔQ) in comparison to the other two protocols (p<0.001). RESULTS: In addition, Ss+Lc resulted in significantly deeper WSL (137.5 µm), followed by Ss (84.1 µm) and Sm (54.9 µm) (p<0.001). While high mineral content was observed in sound enamel surrounding the WSL, lesions created with the Ss+Lc protocol showed the highest demineralization level and changes in the mineral content among the three protocols. CONCLUSION: The biofilm model using S. sobrinus and L. casei for four days was the most appropriate and simplified protocol for developing artificial active WSL with lower fluorescence, higher demineralization, and greater depth.


Subject(s)
Biofilms , Dental Caries , Dental Enamel , Lacticaseibacillus casei , Streptococcus mutans , Humans , Streptococcus mutans/physiology , Dental Caries/microbiology , Dental Caries/therapy , Dental Enamel/microbiology , Dental Enamel/chemistry , Lacticaseibacillus casei/physiology , Time Factors , Reproducibility of Results , Streptococcus sobrinus/physiology , Spectrum Analysis, Raman , Analysis of Variance , Microscopy, Polarization , Statistics, Nonparametric , Tooth Remineralization/methods , Reference Values , Saliva/microbiology , Saliva/chemistry , Tooth Demineralization/microbiology , Fluorescence
4.
Int Orthop ; 48(5): 1351-1356, 2024 May.
Article in English | MEDLINE | ID: mdl-38302595

ABSTRACT

In orthopaedic surgery, as well as other areas in medicine, it is common for a surgical technique to carry the original authors' name describing the procedure. The Judet family represents a unique history, since several orthopaedic procedures are known as "Judet's technique". The aim of this historic review is to outline the genealogy of the orthopaedic arm of the Judet family, while crediting each surgical procedure to the specific family member that described the technique.


Subject(s)
Orthopedic Procedures , Orthopedics , Humans , Orthopedic Procedures/adverse effects , Orthopedic Procedures/methods
5.
Braz J Microbiol ; 55(2): 1817-1828, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38358421

ABSTRACT

The Amazon rainforest, a hotspot for biodiversity, is a crucial research area for scientists seeking novel microorganisms with ecological and biotechnological significance. A key region within the Amazon rainforest is the Amazonian Dark Earths (ADE), noted for supporting diverse plant and microbial communities, and its potential as a blueprint for sustainable agriculture. This study delineates the isolation, morphological traits, carbon source utilization, and genomic features of Fictibacillus terranigra CENA-BCM004, a candidate novel species of the Fictibacillus genus isolated from ADE. The genome of Fictibacillus terranigra was sequenced, resulting in 16 assembled contigs, a total length of 4,967,627 bp, and a GC content of 43.65%. Genome annotation uncovered 3315 predicted genes, encompassing a wide range of genes linked to various metabolic pathways. Phylogenetic analysis indicated that CENA-BCM004 is a putative new species, closely affiliated with other unidentified Fictibacillus species and Bacillus sp. WQ 8-8. Moreover, this strain showcased a multifaceted metabolic profile, revealing its potential for diverse biotechnological applications. It exhibited capabilities to antagonize pathogens, metabolize multiple sugars, mineralize organic matter compounds, and solubilize several minerals. These insights substantially augment our comprehension of microbial diversity in ADE and underscore the potential of Fictibacillus terranigra as a precious resource for biotechnological endeavors. The genomic data generated from this study will serve as a foundational resource for subsequent research and exploration of the biotechnological capabilities of this newly identified species.


Subject(s)
Base Composition , Genome, Bacterial , Phylogeny , Rainforest , Genomics , RNA, Ribosomal, 16S/genetics , Bacillaceae/genetics , Bacillaceae/classification , Bacillaceae/isolation & purification , Bacillaceae/metabolism , Brazil , DNA, Bacterial/genetics
6.
Injury ; 55(2): 111175, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37926664

ABSTRACT

OBJECTIVE: The aim of this study is to investigate stiffness and the maximum load to failure values of single- and double-screw fixation of oblique medial malleolus fractures using partially threaded cancellous screws. Our hypothesis is that single-screw fixation of medial malleolus fractures after SER injuries provides similar stiffness when compared with double-screw fixation. DESIGN: Biomechanical study. METHODS: Twelve composite polyurethane synthetic right distal tibiae were used in the experiment. Oblique fractures of the medial malleolus were created with a band saw using a custom-made osteotomy guide to standardize the cuts in all models. Bone models were randomly separated into two groups and fixed with one (n = 6) or two (n = 6) 4.0 mm partially threaded cancellous screws placed perpendicular to the fracture line. These were tested by applying an offset axial tension at 10 mm/minute up to maximum load displacement, defined as subsidence of the medial malleolus fragment. Maximum load to failure was determined for the groups at the point where the curve ceased to be linear and suffered an inflection. Force versus displacement curves were obtained and recorded. The student's t-test for independent samples was used to compare stiffness (N / mm) and maximum load (N) between experimental groups, with a p value of < 0.05. RESULTS: There were no significant differences in stiffness (p = 0.290) and maximum load (p = 0.191) among the two fixation constructs. Mean stiffness was 62.26 (±SD 21.11) N/mm for double-screw fixation group and 48.24 (±SD 22.40) N/mm for single-screw fixation group. Mean maximum load was 387.83 (±SD 115.78) N for double-screw fixation group and 306.64 (±SD 81.97) N for single-screw fixation group. CONCLUSION: Fixation with one 4.0 mm partially threaded cancellous screw was not shown to be biomechanically inferior to fixation with two 4.0 mm partially threaded cancellous screws in an oblique fracture of the medial malleolus, supporting previous clinical studies that have shown that one screw is sufficient for fractures of the medial malleolus.


Subject(s)
Ankle Fractures , Humans , Ankle Fractures/diagnostic imaging , Ankle Fractures/surgery , Supination , Fracture Fixation, Internal , Bone Screws , Tibia/surgery , Biomechanical Phenomena
7.
Diagnostics (Basel) ; 13(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38066761

ABSTRACT

Introduction: We investigated the biomechanical behaviour of different fixations of the tibial posterior malleolus (TPM), simulating distinct situations of involvement of the tibiotalar articular surface (TTAS) through a finite element model (FEM). Material and methods: A 3D computer-aided design model of the left ankle was obtained. The materials used were divided according to their characteristics into ductile and non-ductile, and all materials were assumed to be linear elastic, isotropic, and homogenous. Three different fracture lines of the TPM were defined, with sagittal angles of 10°, 25°, and 45°. For biomechanical comparison, different constructions using a trans-syndesmotic screw (TSS) only (Group T), a one-third tubular plate only with (Group PT) and without (Group PS) a TSS, and a locked compression plate with (Group LCPT) and without (Group LCPS) a TSS were tested. FEM was used to simulate the boundary conditions of vertical loading. Load application regions were selected in the direction of the 700 N Z-axis, 90% on the tibia and 10% on the fibula. Data on the displacement and stress in the FEM were collected, including the total principal maximum (MaxT) and total principal minimum (MinT) for non-ductile materials, total displacement (desT), localized displacement at the fragment (desL), localized displacement at syndesmosis (desS), and Von Mises equivalent stress for ductile materials. The data were analysed using ANOVA and multiple comparison LSD tests were used. Results: For TPM fractures with sagittal angles 10° and 25°, desL in the PT and LCP groups was significantly lower, as well as Von Mises stress in Group LCPT in 10°, and PT and LCPT groups in 25°. For TPM fractures with a sagittal angle of 45°, desL in the LCP group and Von Mises stress in Group LCPS and LCPT were significantly lower. We found that any TPM fracture may indicate instability of the distal tibiofibular syndesmosis, even when the fragment is small. Conclusion: Our study showed that in fragments involving 10% of the TTAS, the use of a TSS is sufficient, but when the involvement is greater than 25% of the TTAS, either a non-locked or locked plate must be used to buttress the TPM. In posterior fragments affecting 45% or more of the TTAS, the use of a locking plate is recommended.

8.
PLoS One ; 18(12): e0293518, 2023.
Article in English | MEDLINE | ID: mdl-38109440

ABSTRACT

This paper examines scaling behaviors of urban landscape and street design metrics with respect to city population in Latin America. We used data from the SALURBAL project, which has compiled and harmonized data on health, social, and built environment for 371 Latin American cities above 100,000 inhabitants. These metrics included total urbanized area, effective mesh size, area in km2 and number of streets. We obtained scaling relations by regressing log(metric) on log (city population). The results show an overall sub-linear scaling behavior of most variables, indicating a relatively lower value of each variable in larger cities. We also explored the potential influence of colonization on the current built environment, by analyzing cities colonized by Portuguese (Brazilian cities) or Spaniards (Other cities in Latin America) separately. We found that the scaling behaviors are similar for both sets of cities.


Subject(s)
Urban Population , Humans , Cities , Latin America/epidemiology , Brazil
9.
Polymers (Basel) ; 15(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139897

ABSTRACT

Microplastic pollution is a growing public concern as these particles are ubiquitous in various environments and can fragment into smaller nanoplastics. Another environmental concern arises from widely used engineered nanoparticles. Despite the increasing abundance of these nano-sized pollutants and the possibility of interactions with organisms at the sub cellular level, with many risks still being unknown, there are only a few publications on this topic due to the lack of reliable techniques for nanoparticle characterization. We propose a multi-technique approach for the characterization of nanoparticles down to the 10 nm level using standard micro-Raman spectroscopy combined with standard atomic force microscopy. We successfully obtained single-particle spectra from 25 nm sized polystyrene and 9 nm sized TiO2 nanoparticles with corresponding mass limits of detection of 8.6 ag (attogram) and 1.6 ag, respectively, thus demonstrating the possibility of achieving an unambiguous Raman signal from a single, small nanoparticle with a resolution comparable to more complex and time-consuming technologies such as Tip-Enhanced Raman Spectroscopy and Photo-Induced Force Microscopy.

10.
Injury ; 54 Suppl 6: 110747, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38143120

ABSTRACT

To evaluate with mechanical testing (MT) using synthetic femurs, an X-shaped femoroplasty technique with polymethyl methacrylate (PMMA), analyzing the results applied to the prophylaxis of proximal femur (PF) fractures caused by low-energy trauma. MT was performed simulating a fall on the greater trochanter, using fifteen Sawbones™ models. They were divided into three experimental groups (n = 5): control (DP) group, drilled without augmentation (DWA) group, and X-shaped augmentation (DX) group. Maximum load, stiffness, absorbed energy and displacement were analyzed primarily in all groups; and secondarily then, morphology and fracture type were verified in all groups while PMMA volume, temperature and time polymerization were analyzed only in the DX group. The MT results obtained for synthetic models respectively in the DP, DWA, and DX groups were: mean maximum load (5562.0 ±â€¯464.8) N, (4798.0 ±â€¯121.2) N, and (7132.0 ±â€¯206.9) N; mean stiffness values (673 ±â€¯64.34) N/mm, (636 ±â€¯8.7) N/mm, and (738 ±â€¯17.13) N/mm, and mean absorbed energy values (36,203 ±â€¯3819) N.mm, (27,617 ±â€¯3011) N.mm, (44,762 ±â€¯3219) N.mm; mean displacement values (13.6 ±â€¯1.45) N, (11.1 ±â€¯0.5) N, and (13.2 ±â€¯0.69) N. The mean volume, temperature reached during filling in the DX group were 9.8 mL, 42.54ºC with 1' 56" of polymerization. The fracture types were similar between the DP and DWA groups, affecting the trochanteric region, as distinctly to those in the DX group, which were restricted to the femoral neck. The values obtained in MT showed statistical significance when analyzed by one-way ANOVA (5%) for maximum load, stiffness, and absorbed energy between groups. In conclusion, X-shaped PMMA augmentation presents a protective biomechanical characteristic against PF fractures generated in synthetic models by boundary a fall on the greater trochanter.


Subject(s)
Bone Cements , Polymethyl Methacrylate , Humans , Polymethyl Methacrylate/therapeutic use , Bone Cements/therapeutic use , Femur/surgery , Femur Neck , Biomechanical Phenomena , Cadaver
11.
Injury ; 54 Suppl 6: 110782, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38143124

ABSTRACT

PURPOSE: The objectives of this study were to compare syndesmosis dislocation and ankle ligament stress after the fixation of the posterior malleolus fracture (PMF) with four different techniques by Finite Element Analysis (FEM). METHODS: Four internal fixation techniques used for fixation of PMF were assessed by FEM: posterior one-third tubular 3.5 mm buttress plate (PP) with one screw (PP 1 screw), PP with two screws (PP 2 screws), two cannulated 3.5 mm lag screws in the anteroposterior (AP) direction (AP lag screws), and two posteroanterior (PA) cannulated 3.5 mm lag screws (PA lag screws). PMF with 30% fragment size was simulated through computational processing reconstructed from computed tomography (CT). The simulated loads of 700 N and 1200 N were applied to the proximal tibial end. The FEM evaluated the syndesmosis dislocation (mm) and stress values of the posterior tibiofibular ligament (PTFL) (in Kpa) and deltoid ligament (in Kpa) in the four mentioned subgroups. RESULTS: We found that with a load of 700 N, syndesmosis dislocation varied from 6.5 to 7.9 mm, being the lowest and greatest for PA lag screw and PP 1 screw, respectively. In all groups was observed a greater dislocation in the syndesmosis at 1200 N of load. We observed that the stress values on the PTFL were lower for AP lag screws and PP 2 screws with 700 N and 1200 N, respectively. For both loads, PP 1 screw presented the greatest stress. Regarding the stress in the deltoid ligament, the AP lag screws presented the lowest stress for 700 N and PP 1 screw for 1200 N. For all fixation techniques, the syndesmosis displacement and ligament stresses were higher when 1200 N were imposed. CONCLUSION: This study demonstrated that PMF fixed with lag screws presents greater stability in the distal tibiofibular syndesmosis and higher joint loadings promoted greater displacement and ligaments stress, regardless of the fixation technique. Besides, lower stress in the syndesmosis is accompanied by a greater load on the deltoid ligament.


Subject(s)
Ankle Fractures , Joint Dislocations , Humans , Ankle Fractures/diagnostic imaging , Ankle Fractures/surgery , Ankle Joint/diagnostic imaging , Ankle Joint/surgery , Ankle , Ligaments, Articular/diagnostic imaging , Ligaments, Articular/surgery , Tibia , Joint Dislocations/diagnostic imaging , Joint Dislocations/surgery , Fracture Fixation, Internal/methods
12.
Injury ; 54 Suppl 6: 110783, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38143127

ABSTRACT

Vertically unstable pelvic injuries associated with sacroiliac disruption are challenging. Although percutaneous iliosacral fixation using two screws at S1 vertebral body has been shown beneficial, the use of two transiliac screws at S1 has been proposed to increase the fixation strength of the construct. In the herein study, the finite element method (FEM) was performed to analyse the biomechanical behaviour of five different constructions using iliosacral screws only, transiliac screws only, and combining an iliosacral and a transiliac screw. A vertically unstable AO 61C1.2 type pelvic injury was produced for the evaluation of the posterior pelvic displacement and implant stress, and the anterior implant stress using FEM. The symphysis pubis was fixed with a 3.5-mm reconstruction plate in all cases. The model was axially loaded with 800N applied in the centre of S1 body, perpendicular to the ground (Y-axis), simulating the bipodal stance moment. There was a statistically significant reduction in both posterior displacement and implant stresses in the groups fixed with at least one transiliac screw compared to the groups fixed with iliosacral screws. In our FEM study, the construct using two transiliac screws in S1 is biomechanically superior for stabilizing the sacroiliac joint in vertically unstable pelvic ring injuries compared to the other configurations. Lateral displacement, posterior displacement, and von Mises stress were reduced with this construct. A good option can be the use of one iliosacral screw and one transiliac screw in S1.


Subject(s)
Fractures, Bone , Joint Instability , Pelvic Bones , Humans , Sacroiliac Joint/surgery , Sacroiliac Joint/injuries , Fracture Fixation, Internal/methods , Finite Element Analysis , Bone Screws , Fractures, Bone/surgery , Biomechanical Phenomena , Pelvic Bones/surgery , Pelvic Bones/injuries , Sacrum/surgery , Sacrum/injuries
13.
Injury ; 54 Suppl 6: 110810, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38143133

ABSTRACT

Femoral neck fractures (FNFs) affect the young adult population and are intimately related to high-energy trauma. Despite innovations in osteosynthesis materials, the rate of complications remains at 10%-59% in Pauwels type III (PIII) fractures. The authors thus propose a fixation model with a novel self-compression screw, comparing it to a sliding hip screw plate associated with a derotation screw in the fixation of a PIII fracture with posterior inferior comminution. The finite element method (FEM) was used in this comparison along with a virtual femur model with structural characteristics similar to those of a healthy young human bone. We formed 4 groups: Group 1 (GC), intact bone; Group 2 (SHS+S), sliding hip screw plate with derotation screw; Group 3 (XS), X-pin + SS (self-compression model with superior positioning screw); Group 4 (XI), X-pin + IS (self-compression model with inferior positioning screw). A 700 N monotonic load was applied to the apex of the femur head towards the ground so that stress was mainly focused on the fracture site and osteosynthesis. Analyses included total displacement and maximum principal stress and were performed for all groups. Fracture displacement, rotation, and von Mises were assessed only in groups that underwent osteosynthesis. Total displacement values in groups with self-compression screws (XS and XI) were closer to those for healthy femurs, with a 38.5% reduction when comparing the XS group with the SHS+S group. Fracture displacement and rotation values presented reductions of over 60% when comparing the XS and XI groups with the SHS+S group. Equivalent Von Mises stress values were similar between XS and XI and presented a reduction of approximately 5.25% when compared with the SHS+S group. Our FEM analyses demonstrated that the self-compression screw model has potential biomechanical advantages over the SHS+S model.


Subject(s)
Femoral Neck Fractures , Humans , Femoral Neck Fractures/surgery , Bone Screws , Fracture Fixation, Internal/methods , Femur/surgery , Femur Head/surgery , Biomechanical Phenomena , Finite Element Analysis
14.
Microbiol Resour Announc ; 12(11): e0057423, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37811974

ABSTRACT

Here, we report 10 distinct bacterial genomes from Amazonian dark earths, including six identified as Paenibacillus polymyxa, while the remaining four were unique representatives of Paenibacillus vini, Bacillus cereus, Brevibacillus agri, and Fictibacillus sp., respectively. Each strain exhibited antagonistic activity against Fusarium oxysporum, underscoring their potential as sustainable agriculture resources.

15.
Radiat Res ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37702407

ABSTRACT

Radiotherapy is a well-established cancer treatment; it is estimated that approximately 52% of oncology patients will require this treatment modality at least once. However, some tumors, such as triple-negative breast cancer (TNBC), may present as radioresistant and thus require high doses of ionizing radiation and a prolonged period of treatment, which may result in more severe side effects. Moreover, such tumors show a high incidence of metastases and decreased survival expectancy of the patient. Thus, new strategies for radiosensitizing TNBC are urgently needed. Red light therapy, photobiomodulation, has been used in clinical practice to mitigate the adverse side effects usually associated with radiotherapy. However, no studies have explored its use as a radiosensitizer of TNBC. Here, we used TNBC-bearing mice as a radioresistant cancer model. Red light treatment was applied in three different protocols before a high dose of radiation (60 Gy split in 4 fractions) was administered. We evaluated tumor growth, mouse clinical signs, total blood cell counts, lung metastasis, survival, and levels of glutathione in the blood. Our data showed that the highest laser dose in combination with radiation arrested tumor progression, likely due to inhibition of GSH synthesis. In addition, red light treatment before each fraction of radiation, regardless of the light dose, improved the health status of the animals, prevented anemia, reduced metastases, and improved survival. Collectively, these results indicate that red light treatment in combination with radiation could prove useful in the treatment of TNBC.

16.
Radiat Res ; 200(4): 366-373, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37772737

ABSTRACT

Radiotherapy is a well-established cancer treatment; it is estimated that approximately 52% of oncology patients will require this treatment modality at least once. However, some tumors, such as triple-negative breast cancer (TNBC), may present as radioresistant and thus require high doses of ionizing radiation and a prolonged period of treatment, which may result in more severe side effects. Moreover, such tumors show a high incidence of metastases and decreased survival expectancy of the patient. Thus, new strategies for radiosensitizing TNBC are urgently needed. Red light therapy, photobiomodulation, has been used in clinical practice to mitigate the adverse side effects usually associated with radiotherapy. However, no studies have explored its use as a radiosensitizer of TNBC. Here, we used TNBC-bearing mice as a radioresistant cancer model. Red light treatment was applied in three different protocols before a high dose of radiation (60 Gy split in 4 fractions) was administered. We evaluated tumor growth, mouse clinical signs, total blood cell counts, lung metastasis, survival, and levels of glutathione in the blood. Our data showed that the highest laser dose in combination with radiation arrested tumor progression, likely due to inhibition of GSH synthesis. In addition, red light treatment before each fraction of radiation, regardless of the light dose, improved the health status of the animals, prevented anemia, reduced metastases, and improved survival. Collectively, these results indicate that red light treatment in combination with radiation could prove useful in the treatment of TNBC.


Subject(s)
Radiation-Sensitizing Agents , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/radiotherapy , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Disease Models, Animal , Cell Line, Tumor , Radiation-Sensitizing Agents/pharmacology , Light
17.
PLoS One ; 18(8): e0288515, 2023.
Article in English | MEDLINE | ID: mdl-37561781

ABSTRACT

Urban parks have been studied for their effects on health and the environment. Accessing park data from reliable and comparable sources remains challenging, reinforcing the importance of standardized search tools, notably in Latin America. We designed a systematized methodology to identify processes of accessing, collecting, verifying, and harmonizing urban park spatial data in all Brazilian capitals included in the Urban Health in Latin America (SALURBAL) project. We developed a research protocol using official and non-official sources combining the results of Google Maps (GMaps) points and OpenStreetMap (OSM) polygons-GMaps-OSM. Descriptive analyses included the frequency of the distribution of parks before and after harmonization stratified by data source. We used the intraclass correlation coefficient (ICC) to assess agreement in the area between official and GMaps-OSM data. Official data were obtained for 16 cities; for the remaining 11 capitals, we used GMaps-OSM. After verification and harmonization, 302 urban parks were obtained from official data and 128 from GMaps-OSM. In a sub-study of the 16 cities with official data (n = 302 parks), we simulated a collection of non-official data using GMaps-OSM and OSM only. From GMaps-OSM, we obtained 142 parks, and from OSM, 230 parks. Statistical analysis showed a better agreement between official data and OSM. After completing verification and harmonization, the complete dataset (official and GMaps-OSM) included 430 urban parks with a total area of 145.14 km2. The mean number of parks across cities was 16, with a mean size area of 0.33 km2. The median number of parks was nine, with a median area of 0.07 km2. This study highlights the importance of creating mechanisms to access, collect, harmonize, and verify urban park data, which is essential for examining the impact of parks on health. It also stresses the importance of providing reliable urban park spatial data for city officials.


Subject(s)
Parks, Recreational , Urban Health , Humans , Brazil , Cities , Data Collection , Urban Population
18.
Rev Bras Ortop (Sao Paulo) ; 58(3): 507-513, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37396077

ABSTRACT

Objective To evaluate the biomechanical capacity of two forms of fixation for Pipkin type-II fractures, describing the vertical fracture deviation, the maximum and minimum principal stresses, and the Von Mises equivalent stress in the syntheses used. Materials and Methods Two internal fasteners were developed to treat Pipkin type-II fractures through finite elements: a 3.5-mm cortical screw and a Herbert screw. Under the same conditions, the vertical fracture deviation, the maximum and minimum principal stresses, and the Von Mises equivalent stress in the syntheses used were evaluated. Results The vertical displacements evaluated were of 1.5 mm and 0.5 mm. The maximum principal stress values obtained in the upper region of the femoral neck were of 9.7 KPa and 1.3 Kpa, and the minimum principal stress values obtained in the lower region of the femoral neck were of -8.7 KPa and -9.3 KPa. Finally, the peak values for Von Mises stress were of 7.2 GPa and 2.0 GPa for the fixation models with the use of the 3.5-mm cortical screw and the Herbert screw respectively. Conclusion The fixation system with the Herbert screw generated the best results in terms of reduction of vertical displacement, distribution of the maximum principal stress, and the peak Von Mises equivalent stress, demonstrating mechanical superiority compared to that of the 3.5-mm cortical screw in the treatment of Pipkin type-II fractures.

19.
J Fungi (Basel) ; 9(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37504706

ABSTRACT

In recent years, Candida auris has emerged as a hazardous hospital-acquired pathogen. Its resistance to antifungal treatments makes it challenging, requiring new approaches to manage it effectively. Herein, we aimed to assess the impact of photodynamic inactivation mediated by methylene blue (MB-PDI) or 1,9-dimethyl MB (DMMB-PDI) combined with a red LED against C. auris. To evaluate the photoinactivation of yeasts, we quantified colony-forming units and monitored ROS production. To gain some insights into the differences between MB and DMMB, we assessed lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm). After, we verified the effectiveness of DMMB against biofilms by measuring metabolic activity and biomass, and the structures were analyzed through scanning electron microscopy and optical coherence tomography. We also evaluated the cytotoxicity in mammalian cells. DMMB-PDI successfully eradicated C. auris yeasts at 3 µM regardless of the light dose. In contrast, MB (100 µM) killed cells only when exposed to the highest dose of light. DMMB-PDI promoted higher ROS, LPO and ΔΨm levels than those of MB. Furthermore, DMMB-PDI was able to inhibit biofilm formation and destroy mature biofilms, with no observed toxicity in fibroblasts. We conclude that DMMB-PDI holds great potential to combat the global threat posed by C. auris.

20.
Acta Ortop Bras ; 31(2): e259557, 2023.
Article in English | MEDLINE | ID: mdl-37151730

ABSTRACT

Objective: To determine, by biomechanical analysis, safe patellar cut limits in anterior cruciate ligament (ACL) reconstruction that minimize fracture risks. Methods: From three-dimensional reconstruction, triangular cuts were made in the patella, with a depth of 6.5 mm and variable width and length (10 to 20 mm and 8 to 12 mm, respectively, both with an interval of 1 mm). The combinations of cuts constituted 55 models for tests, with five variations in width and 11 variations in length, tested with the finite element method (FEM). Results: The mean of the localized principal maximum (traction force) values was 4.36 Pa (SD 0.87 ± 0.76) and the localized principal minimum (compression force) was -4.33 Pa (SD 1.05 ± 1.11). Comparing width and length to the tension force of the values of the main maximum, we found statistical significance from 11 mm for width and 13 mm for length. Conclusion: In ACL reconstruction, the removal of the patellar bone fragment is safe for fragments smaller than 11 mm in width and 13 mm in length, which corresponds to 24% of the width and 28% of the length of the patella used. Level of Evidence II, Comparative Prospective Study.


Objetivo: Determinar, por meio de análise biomecânica, os limites de corte patelar seguros para a reconstrução do ligamento cruzado anterior (LCA) e que minimizem riscos de fratura. Métodos: A partir de reconstrução tridimensional, foram feitos cortes triangulares na patela, com profundidade de 6,5 mm e largura e comprimento variáveis (8 a 12 mm e 10 a 20 mm), respectivamente, com intervalo de 1 mm). As combinações dos cortes constituíram 55 modelos para ensaios, com 5 variações de largura e 11 variações de comprimento, ensaiados por meio do método dos elementos finitos (MEF). Resultados: A média dos valores da máxima principal localizada (força de tração) foi de 4,36 Pa (DP 0,87 ± 0,76), e a mínima principal localizada (força de compressão) foi de −4,33 Pa (DP 1,05 ± 1,11). Comparando largura e comprimento à força de tensões dos valores da máxima principal, houve significância estatística a partir de 11 mm para largura e 13 mm para comprimento. Conclusão: Na reconstrução do LCA, a retirada do fragmento ósseo patelar mostrou-se segura para fragmentos menores que 11 mm de largura e 13 mm de comprimento, o que corresponde a 24% da largura e 28% do comprimento da patela utilizada. Nível de Evidência II, Estudo Prospectivo Comparativo.

SELECTION OF CITATIONS
SEARCH DETAIL
...