Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 13(12)2021 12 20.
Article in English | MEDLINE | ID: mdl-34941749

ABSTRACT

Crotalphine (CRP) is a structural analogue to a peptide that was first identified in the crude venom from the South American rattlesnake Crotalus durissus terrificus. This peptide induces a potent and long-lasting antinociceptive effect that is mediated by the activation of peripheral opioid receptors. The opioid receptor activation regulates a variety of intracellular signaling, including the mitogen-activated protein kinase (MAPK) pathway. Using primary cultures of sensory neurons, it was demonstrated that crotalphine increases the level of activated ERK1/2 and JNK-MAPKs and this increase is dependent on the activation of protein kinase Cζ (PKCζ). However, whether PKCζ-MAPK signaling is critical for crotalphine-induced antinociception is unknown. Here, we biochemically demonstrated that the systemic crotalphine activates ERK1/2 and JNK and decreases the phosphorylation of p38 in the lumbar spinal cord. The in vivo pharmacological inhibition of spinal ERK1/2 and JNK, but not of p38, blocks the antinociceptive effect of crotalphine. Of interest, the administration of a PKCζ pseudosubstrate (PKCζ inhibitor) prevents crotalphine-induced ERK activation in the spinal cord, followed by the abolishment of crotalphine-induced analgesia. Together, our results demonstrate that the PKCζ-ERK signaling pathway is involved in crotalphine-induced analgesia. Our study opens a perspective for the PKCζ-MAPK axis as a target for pain control.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Pain/drug therapy , Peptides/pharmacology , Protein Kinase C/metabolism , Signal Transduction/drug effects , Animals , Behavior, Animal , Gene Expression Regulation, Enzymologic/drug effects , Mitogen-Activated Protein Kinases/genetics , Protein Kinase C/genetics , Rats , Rats, Wistar
2.
Int J Vitam Nutr Res ; 90(1-2): 113-123, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30545278

ABSTRACT

ß-hydroxy-ß-methyl butyrate (HMB) is a bioactive metabolite derived from the amino acid leucine, usually applied for muscle mass increase during physical training, as well as for muscle mass maintenance in debilitating chronic diseases. The hypothesis of the present study is that HMB is a safe supplement for muscle mass gain by strength training. Based on this, the objective was to measure changes in body composition, glucose homeostasis and hepatic metabolism of HMB supplemented mice during strength training. Two of four groups of male mice (n = 6/group) underwent an 8-week training period session (climbing stairs) with or without HMB supplementation (190 mg/kgBW per day). We observed lower body mass gain (4.9 ± 0.43% versus 1.2 ± 0.43, p < 0.001) and increased liver mass (40.9 ± 0.9 mg/gBW versus 44.8 ± 1.3, p < 0.001) in the supplemented trained group compared with the non-supplemented groups. The supplemented trained group had an increase in relative adipose tissue mass (12.4 ± 0.63 mg/gBW versus 16.1 ± 0.88, P < 0.01) compared to the non-supplemented untrained group, and an increase in fasting blood glucose (111 ± 4.58 mg/dL versus 122 ± 3.70, P < 0.05) and insulin resistance (3.79 ± 0.19 % glucose decay/min versus 2.45 ± 0.28, P < 0.05) comparing with non-supplemented trained group. Adaptive heart hypertrophy was observed only in the non-supplemented trained group (4.82 ± 0.05 mg/gBW versus 5.12 ± 0.13, P < 0.05). There was a higher hepatic insulin-like growth factor-1 expression (P = 0.002) in supplemented untrained comparing with non-supplemented untrained group. Gene expression of gluconeogenesis regulatory factors was increased by training and reduced by HMB supplementation. These results confirm that HMB supplementation associated with intensive training protocol drives changes in glucose homeostasis and liver metabolism in mice.


Subject(s)
Dietary Supplements , Glucose/metabolism , Homeostasis/drug effects , Muscle, Skeletal , Valerates/metabolism , Animals , Glucose/chemistry , Humans , Liver , Male , Mice , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Valerates/chemistry
3.
Pharmacol Rep ; 71(6): 1201-1209, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31669884

ABSTRACT

BACKGROUND: The present study evaluated the antioxidant, antinociceptive and anti-edematogenic effects of Se-[(2,2-dimethyl-1,3-dioxolan-4-yl) methyl] 4-chlorobenzoselenolate (Se-DMC). METHODS: In vitro experiments were carried out to evaluate Se-DMC antioxidant action. Thiobarbituric acid reactive species levels, 2,2'-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-thylbenzthiazoline-6-sulfonic acid) radicals scavenging and glutathione S-transferase-like activity were determined. Male Swiss mice were orally pretreated with Se-DMC (1, 10 and 50 mg/kg), meloxicam (50 mg/kg) or vehicle 30 min prior to acetic acid or glutamate test. To extend our knowledge of the pharmacological properties of this compound, it was tested in an inflammatory model through ear edema induced by croton oil. The contribution of glutamatergic and serotonergic systems was also investigated. RESULTS: In vitro experiments revealed that Se-DMC exerts antioxidant activity. Nociception induced by glutamate or acetic acid was reduced by Se-DMC or meloxicam. Se-DMC diminished the paw edema formation induced by glutamate, while meloxicam did not show any effect. Se-DMC and meloxicam decreased the ear edema formation and protected against the increase in myeloperoxidase activity in mice ear induced by croton oil. The pretreatment of animals with MK-801 did not alter antinociception caused by Se-DMC in the glutamate test. The antinociceptive effect exerted by Se-DMC in the acetic acid test was reverted by the pretreatment of mice with different serotonergic antagonists (WAY100635, ketanserin and pindolol). CONCLUSIONS: Data presented here showed that the modulation of serotonergic and glutamatergic systems and the anti-inflammatory and antioxidant actions could contribute to the antinociceptive and anti-edematogenic effects of Se-DMC and it supported the therapeutic potential of this compound.


Subject(s)
Analgesics/pharmacology , Nociception/drug effects , Pain Measurement/drug effects , Selenium/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Disease Models, Animal , Edema/drug therapy , Edema/metabolism , Glutamic Acid/metabolism , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...