Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(21): 8249-8253, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38717298

ABSTRACT

Combinatorial electrochemistry has great promise for accelerated reaction screening, organic synthesis, and catalysis. Recently, we described a new high-throughput electrochemistry platform, colloquially named "Legion". Legion fits the footprint of a 96-well microtiter plate with simultaneous individual control over all 96 electrochemical cells. Here, we demonstrate the versatility of Legion when coupled with high-throughput mass spectrometry (MS) for electrosynthetic product screening and quantitation. Electrosynthesis of benzophenone azine was selected as a model reaction and was arrayed and optimized using a combination of Legion and nanoelectrospray ionization MS. The combination of high-throughput synthesis with Legion and analysis via MS proves a compelling strategy for accelerating reaction discovery and optimization in electro-organic synthesis.

2.
Anal Chem ; 95(50): 18557-18563, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38050376

ABSTRACT

Lipids are important biomarkers within the field of disease diagnostics and can serve as indicators of disease progression and predictors of treatment effectiveness. Although lipids can provide important insight into how diseases initiate and progress, mass spectrometric methods for lipid characterization and profiling are limited due to lipid structural diversity, particularly the presence of various lipid isomers. Moreover, the difficulty of handling small-volume samples exacerbates the intricacies of biological analyses. In this work, we have developed a strategy that electromigrates a thin film of a small-volume biological sample directly to the air-liquid interface formed at the tip of a theta capillary. Importantly, we seamlessly integrated in situ biological lipid extraction with accelerated chemical derivatization, enabled by the air-liquid interface, and conducted isomeric structural characterization within a unified platform utilizing theta capillary nanoelectrospray ionization mass spectrometry, all tailored for small-volume sample analysis. We applied this unified platform to the analysis of lipids from small-volume human plasma and Alzheimer's disease mouse serum samples. Accelerated electro-epoxidation of unsaturated lipids at the interface allowed us to characterize lipid double-bond positional isomers. The unique application of electromigration of a thin film to the air-liquid interface in combination with accelerated interfacial reactions holds great potential in small-volume sample analysis for disease diagnosis and prevention.


Subject(s)
Lipids , Spectrometry, Mass, Electrospray Ionization , Mice , Humans , Animals , Mass Spectrometry , Isomerism , Lipids/analysis , Spectrometry, Mass, Electrospray Ionization/methods
3.
J Am Soc Mass Spectrom ; 34(9): 1998-2005, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37523498

ABSTRACT

Characterization of nonpolar lipids is crucial due to their essential biological functions and ability to exist in various isomeric forms. In this study, we introduce the N-H aziridination method to target carbon-carbon double bonds (C═C bonds) in nonpolar sterol lipids. The resulting fragments are readily dissociated upon collision-induced dissociation, generating specific fragment ions for C═C bond position determination and fingerprint fragments for backbone characterization. This method significantly enhances lipid ionization efficiency, thereby improving the sensitivity and accuracy of nonpolar lipid analysis. We demonstrated that aziridination of sterols leads to distinctive fragmentation pathways for chain and ring C═C bonds, enabling the identification of sterol isomers such as desmosterol and 7-dehydrocholesterol. Furthermore, aziridination can assist in identifying the sterol backbone by providing fingerprint tandem mass spectra. We also demonstrated the quantitative capacity of this approach with a limit of detection of 10 nM in the solvent mixture of methanol and water. To test the feasibility of this method in complex biological samples, we used mouse prostate cancerous tissues and found significant differences in nonpolar lipid profiles between healthy and cancerous samples. The high efficiency and specificity of aziridination-assisted mass spectrometric analysis, as well as its quantitative analysis ability, make it highly suitable for broad applications in nonpolar lipid research.


Subject(s)
Phytosterols , Sterols , Male , Mice , Animals , Isomerism , Tandem Mass Spectrometry/methods , Carbon , Spectrometry, Mass, Electrospray Ionization/methods
4.
Anal Bioanal Chem ; 415(18): 4197-4208, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37017722

ABSTRACT

In this work, we present an in situ droplet-based derivatization method for fast tissue lipid profiling at multiple isomer levels. On-tissue derivatization for isomer characterization was achieved in a droplet delivered by the TriVersa NanoMate LESA pipette. The derivatized lipids were then extracted and analyzed by the automated chip-based liquid extraction surface analysis (LESA) mass spectrometry (MS) followed by tandem MS to produce diagnostic fragment ions to reveal the lipid isomer structures. Three reactions, i.e., mCPBA epoxidation, photocycloaddition catalyzed by the photocatalyst Ir[dF(CF3)ppy]2(dtbbpy)PF6, and Mn(II) lipid adduction, were applied using the droplet-based derivatization to provide lipid characterization at carbon-carbon double-bond positional isomer and sn-positional isomer levels. Relative quantitation of both types of lipid isomers was also achieved based on diagnostic ion intensities. This method provides the flexibility of performing multiple derivatizations at different spots in the same functional region of an organ for orthogonal lipid isomer analysis using a single tissue slide. Lipid isomers were profiled in the cortex, cerebellum, thalamus, hippocampus, and midbrain of the mouse brain and 24 double-bond positional isomers and 16 sn-positional isomers showed various distributions in those regions. This droplet-based derivatization of tissue lipids allows fast profiling of multi-level isomer identification and quantitation and has great potential in tissue lipid studies requiring rapid sample-to-result turnovers.


Subject(s)
Lipids , Tandem Mass Spectrometry , Mice , Animals , Tandem Mass Spectrometry/methods , Isomerism
5.
Analyst ; 147(21): 4838-4844, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36128870

ABSTRACT

Characterization of glycerophospholipid isomers is of significant importance as they play different roles in physiological and pathological processes. In this work, we present a novel and bifunctional derivatization method utilizing Mn(II)-catalyzed epoxidation to simultaneously identify carbon-carbon double bond (CC bond)- and stereonumbering (sn)-positional isomers of phosphatidylcholine. Mn(II) coordinates with picolinic acid and catalyzes epoxidation of unsaturated lipids by peracetic acid. Collision-induced dissociation (CID) of the epoxides generates diagnostic ions that can be used to locate CC bond positions. Meanwhile, CID of Mn(II) ion-lipid complexes produces characteristic ions for determination of sn positions. This bifunctional derivatization takes place in seconds, and the diagnostic ions produced in CID are clear and easy to interpret. Moreover, relative quantification of CC bond-and sn-positional isomers was achieved. The capability of this method in identifying lipids at multiple isomer levels was shown using lipid standards and lipid extracts from complex biological samples.


Subject(s)
Glycerophospholipids , Peracetic Acid , Phosphatidylcholines/chemistry , Ions/chemistry , Epoxy Compounds , Carbon , Catalysis
6.
Angew Chem Int Ed Engl ; 61(39): e202207098, 2022 09 26.
Article in English | MEDLINE | ID: mdl-35932470

ABSTRACT

Knowing concentrations of lipids is essential for understanding their physiological functions and discovering new disease biomarkers. However, it is highly challenging to accurately quantify lipids due to structural diversity and multiple isomeric forms of lipids. To address these critical gaps, we have developed a novel aziridine-based isobaric tag labelling strategy that allows (i) determination of lipid double-bond positional isomers, (ii) accurate relative quantification of unsaturated lipids, and (iii) improvement of ionization efficiencies of nonpolar lipids. The power of this method is demonstrated in characterization and quantification of various categories of lipids such as fatty acids, phosphoglycerol lipids, cholesteryl esters (CE), and glycerides. 17 CE lipid isomers were identified and quantified simultaneously from Alzheimer's disease (AD) mouse serum without using lipid standards. Among them, 6 CE isomers showed significant changes in concentrations in AD serum.


Subject(s)
Aziridines , Cholesterol Esters , Animals , Biomarkers , Fatty Acids , Glycerides , Isomerism , Mice
7.
Chempluschem ; 86(3): 434-445, 2021 03.
Article in English | MEDLINE | ID: mdl-33689239

ABSTRACT

Hyphenation of electrochemistry (EC) and mass spectrometry has become a powerful tool to study redox processes. Approaches that can achieve this hyphenation include integrating chromatography/electrophoresis between electroinduced redox reactions and detection of products, coupling an EC flow cell to a mass spectrometer, and performing electrochemical reactions inside the ion source of a mass spectrometer. The first two approaches have been well reviewed elsewhere. This Minireview highlights the inherent electrochemical properties of many mass spectrometry ion sources and their roles in the coupling of electrochemistry and mass spectrometric analysis. Development of modified ion sources that allow the compatibility of electrochemistry with ionization processes is also surveyed. Applications of different in-source electrochemical devices are provided including intermediate capturing, bioanalytical studies, nanoparticle formation, electrosynthesis, and electrode imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...