Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 246: 125665, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37406900

ABSTRACT

Despite the worldwide vaccination effort against COVID-19, the demand for biocidal materials has increased. One promising solution is the chemical modification of polysaccharides, such as chitosan, which can provide antiviral activity through the insertion of cationic terminals. In this study, chitosan was modified with (4-carboxybutyl) triphenylphosphonium bromide to create N-phosphonium chitosan (NPCS), a quaternized derivative. The resulting NPCS samples with three degrees of substitution (15.6 %, 19.8 % and 24.2 %) were characterized and found to have improved solubility in water and alkaline solutions but reduced thermal stability. The particles zeta potential exhibits positive charges and is directly correlated with the degree of substitution of the derivative. In virucidal assays, all NPCS samples were able to inhibit 99.999 % of the MHV-3 coronavirus within 5 min at low concentrations of 0.1 mg/mL, while maintaining low cytotoxicity to L929 cells. In addition to its potential application against current coronavirus strains, NPCS could also be valuable in combating future pandemics caused by other viral pathogens. The antiviral properties of NPCS make it a promising material for use in coating surface and personal protective equipment to limit the spread of disease-causing viruses.


Subject(s)
COVID-19 , Chitosan , Viruses , Humans , Chitosan/chemistry , Antiviral Agents/pharmacology
2.
Polymers (Basel) ; 12(12)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266285

ABSTRACT

Chitosan, a chitin-derivative polysaccharide, known for its non-toxicity, biocompatibility and biodegradability, presents limited applications due to its low solubility in neutral or basic pH medium. Quaternization stands out as an alternative to modify this natural polymer, aiming to improve its solubility over a wide pH range and, consequently, expand its range of applications. Quaternization occurs by introducing a quaternary ammonium moiety onto or outside the chitosan backbone, via chemical reactions with primary amino and hydroxyl groups, under vast experimental conditions. The oldest and most common forms of quaternized chitosan involve N,N,N-trimethyl chitosan (TMC) and N-[(2-hydroxy-3-trimethyl ammonium) propyl] chitosan (HTCC) and, more recently, quaternized chitosan by insertion of pyridinium or phosphonium salts. By modifying chitosan through the insertion of a quaternary moiety, permanent cationic charges on the polysaccharide backbone are achieved and properties such as water solubility, antimicrobial activity, mucoadhesiveness and permeability are significantly improved, enabling the application mainly in the biomedical and pharmaceutical areas. In this review, the main quaternized chitosan compounds are addressed in terms of their structure, properties, synthesis routes and applications. In addition, other less explored compounds are also presented, involving the main findings and future prospects regarding the field of quaternized chitosans.

SELECTION OF CITATIONS
SEARCH DETAIL
...