Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1090039, 2023.
Article in English | MEDLINE | ID: mdl-36896173

ABSTRACT

Adipose tissue is an organ with metabolic and endocrine activity. White, brown and ectopic adipose tissues have different structure, location, and function. Adipose tissue regulates energy homeostasis, providing energy in nutrient-deficient conditions and storing it in high-supply conditions. To attend to the high demand for energy storage during obesity, the adipose tissue undergoes morphological, functional and molecular changes. Endoplasmic reticulum (ER) stress has been evidenced as a molecular hallmark of metabolic disorders. In this sense, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), a bile acid conjugated to taurine with chemical chaperone activity, has emerged as a therapeutic strategy to minimize adipose tissue dysfunction and metabolic alterations associated with obesity. In this review, we highlight the effects of TUDCA and receptors TGR5 and FXR on adipose tissue in the setting of obesity. TUDCA has been demonstrated to limit metabolic disturbs associated to obesity by inhibiting ER stress, inflammation, and apoptosis in adipocytes. The beneficial effect of TUDCA on perivascular adipose tissue (PVAT) function and adiponectin release may be related to cardiovascular protection in obesity, although more studies are needed to clarify the mechanisms. Therefore, TUDCA has emerged as a potential therapeutic strategy for obesity and comorbidities.


Subject(s)
Adiposity , Taurochenodeoxycholic Acid , Humans , Taurochenodeoxycholic Acid/pharmacology , Taurochenodeoxycholic Acid/therapeutic use , Taurochenodeoxycholic Acid/metabolism , Adipose Tissue/metabolism , Obesity/drug therapy , Obesity/metabolism
2.
Amino Acids ; 51(4): 727-738, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30830312

ABSTRACT

Obesity in fathers leads to DNA damage and epigenetic changes in sperm that may carry potential risk factors for metabolic diseases to the next generation. Taurine (TAU) supplementation has demonstrated benefits against testicular dysfunction and pancreatic islet impairments induced by obesity, but it is not known if these protective actions prevent the propagation of metabolic disruptions to the next generation; as such, we hypothesized that paternal obesity may increase the probability of endocrine pancreatic dysfunction in offspring, and that this could be prevented by TAU supplementation in male progenitors. To test this, male C57Bl/6 mice were fed on a control diet (CTL) or a high-fat diet (HFD) without or with 5% TAU in their drinking water (CTAU and HTAU) for 4 months. Subsequently, all groups of mice were mated with CTL females, and the F1 offspring were identified as: CTL-F1, CTAU-F1, HFD-F1, and HTAU-F1. HFD-fed mice were normoglycemic, but glucose intolerant and their islets hypersecreted insulin. However, at 90 days of age, HFD-F1 offspring displayed normal glucose homeostasis and adiposity, but reduced glucose-induced insulin release. HFD-F1 islets also exhibited ß- and α-cell hypotrophy, and lower δ-cell number per islet. Paternal TAU supplementation prevented the decrease in glucose-induced insulin secretion and normalized ß-cell size and δ-cell number, and increased α-cell size/islet in HTAU-F1 mice. In conclusion, HFD consumption by male founders decreases ß-cell secretion and islet-cell distribution in their offspring. TAU attenuates the deleterious effects of paternal obesity on insulin secretion and islet-cell morphology in F1 offspring.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Supplements , Endocrine System/drug effects , Glucose Intolerance/drug therapy , Islets of Langerhans/drug effects , Pancreatic Diseases/drug therapy , Taurine/administration & dosage , Animals , Endocrine System/physiopathology , Glucose Intolerance/etiology , Glucose Intolerance/pathology , Homeostasis , Insulin Secretion , Islets of Langerhans/physiopathology , Male , Mice , Mice, Inbred C57BL , Obesity/physiopathology , Pancreatic Diseases/etiology , Pancreatic Diseases/pathology
3.
J Steroid Biochem Mol Biol ; 190: 54-63, 2019 06.
Article in English | MEDLINE | ID: mdl-30923014

ABSTRACT

Oral contraception is the most commonly used interventional method in the world. However, several women employ the continuous use of these hormones to avoid pre- and menstruation discomforts. Some studies indicate that oral contraceptives are associated with disturbances in glycemia and the effects of the use of a continuous regime are poorly elucidated. Herein, we evaluated the effects of the continuous administration of a combined oral contraceptive (COC) composed by ethinyl estradiol (EE) and drospirenone (DRSP) on glucose homeostasis in female mice. Adult Swiss mice received 0.6 µg EE and 60 µg DRSP (COC group) or vehicle [control (CTL)] daily by gavage for 35 days. COC treatment had no effect on body weight or adiposity, but increased uterus weight and induced hepatomegaly. Importantly, COC females displayed normal glycemia and glucose tolerance, but hyperinsulinemia and lower plasma C-peptide/insulin ratio, indicating reduced insulin clearance. Furthermore, COC mice displayed reduced protein content of the ß subunit of the insulin receptor (IRß) in the liver. Additionally, pancreatic islets isolated from COC mice secreted more insulin in response to increasing glucose concentrations. This effect was associated with the activity of steroid hormones, since INS-1E cells incubated with EE plus DRSP also secreted more insulin. Therefore, we provide the first evidence that the continuous administration of EE and DRSP lead to hyperinsulinemia, due to enhancement of insulin secretion and the reduction of insulin degradation, which possibly lead to the down-regulation of hepatic IRß. These findings suggest that the continuous administration of COC could cause insulin resistance with the prolongation of treatment.


Subject(s)
Androstenes/adverse effects , Contraceptives, Oral, Combined/adverse effects , Ethinyl Estradiol/adverse effects , Hyperinsulinism/chemically induced , Insulin-Secreting Cells/drug effects , Insulin/metabolism , Animals , Female , Glucose/metabolism , Hyperinsulinism/metabolism , Insulin Resistance , Insulin-Secreting Cells/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...