Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Appl Biochem ; 68(4): 801-808, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33180374

ABSTRACT

Guava seed biochar appears as a new alternative of the effective support to the immobilization of Burkholderia cepacia lipase (BCL) by physical adsorption. The objective of this work was to evaluate the potential of this immobilized biocatalyst in the transesterification reaction of crude coconut oil and ethanol and to understand the mechanism of the reaction through the study of molecular docking. The best loading of BCL was determined to be 0.15 genzyme /gsupport having a hydrolytic activity of 260 U/g and 54% immobilization yield. The products of transesterification reaction produced a maximum yield at 40 °C under different reaction conditions. The monoacylglycerols (MAGs) conversion of 59% was using substrate molar ratio oil:ethanol of 1:7 with the reaction time of 24 H. In addition, the highest ethyl esters yield (48%) had the molar ratio of 1:7 with the reaction time of 96 H and maximum conversion of diacylglycerols (DAGs) was 30% with the molar ratio of 1:6 with the reaction time of 24 H. Molecular Docking was applied to clarify the mechanisms of transesterification reaction at the molecular level. MAGs and DAGs are compounds with excellent emulsifying properties used in industrial production of several bioproducts such as cosmetic, pharmaceuticals, foods, and lubricants.


Subject(s)
Bacterial Proteins/chemistry , Burkholderia cepacia/enzymology , Charcoal/chemistry , Coconut Oil/chemistry , Enzymes, Immobilized/chemistry , Lipase/chemistry , Esterification
2.
Biotechnol Appl Biochem ; 67(3): 404-413, 2020 May.
Article in English | MEDLINE | ID: mdl-31930535

ABSTRACT

Here, we have assessed the use of one packed bed or two packed bed reactors in series in which Burkholderia cepacia lipase (BCL) was immobilized on protic ionic liquid (PIL)-modified silica and used as a biocatalyst for the transesterification of crude coconut oil. Reaction parameters including volumetric flow, temperature, and molar ratio were evaluated. The conversion of transesterification reaction products (ethyl esters) was determined using gas chromatography and the quantities of intermediate products (diglyceride and monoglyceride [MG]) were assessed using high-performance liquid chromatography. Packed bed reactors in series produced ethyl esters with the greatest efficiency, achieving 65.27% conversion after 96 H at a volumetric flow rate of 0.50 mL Min-1 at 40 °C and a 1:9 molar ratio of oil to ethanol. Further, within the first 24 H of the reaction, increased MG (54.5%) production was observed. Molecular docking analyses were performed to evaluate the catalytic step of coconut oil transesterification in the presence of BCL. Molecular docking analysis showed that triglycerides have a higher affinity energy (-5.7 kcal mol-1 ) than the smallest MG (-6.0 kcal mol-1 ), therefore, BCL catalyzes the conversion of triglycerides rather than MG, which is consistent with experimental results.


Subject(s)
Bioreactors , Coconut Oil/metabolism , Esters/metabolism , Lipase/metabolism , Biocatalysis , Burkholderia cepacia/enzymology , Coconut Oil/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Esters/chemistry , Lipase/chemistry
3.
Biotechnol Appl Biochem ; 66(5): 823-832, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31206795

ABSTRACT

Alternative strategies are required to develop the optimized production of fatty acids using biocatalysis; molecular docking and response surface methodology are efficient tools to achieve this goal. In the present study, we demonstrate a novel and robust methodology for the sustainable production of fatty acids from Moringa oleifera Lam oil using lipase-catalyzed hydrolysis (without the presence of emulsifiers or buffer solutions). Seven commercial lipases from Candida rugosa (CRL), Burkholderia cepacia (BCL), Thermomyces lanuginosus (TLL), Rhizopus niveus (RNL), Pseudomonas fluorescens (PFL), Mucor javanicus (MJL), and porcine pancreas (PPL) were used as biocatalysts. Initial screening showed that CRL had the highest hydrolytic activity (hydrolysis degree of 81%). Molecular docking analysis contributed to the experimental results, showing that CRL displays more stable binding free energy with oleic acid (C18:1), which is the fatty acid of highest concentration in Moringa oleifera Lam oil. To evaluate and optimize the hydrolysis process, response surface methodology (RSM) was used. The effect of temperature, mass ratio oil:water, and hydrolytic activity on enzymatic hydrolysis was evaluated by central composite design using RSM. Under the optimized conditions (temperature of 37 °C, mass ratio oil:water of 25%, and hydrolytic activity of 550 U goil -1 ), the maximum hydrolysis degree (100%) was achieved. The present study provides a robust method for the enzymatic hydrolysis of different oils for efficient and sustainable fatty acid production.


Subject(s)
Fatty Acids/analysis , Lipase/metabolism , Molecular Docking Simulation , Moringa oleifera/metabolism , Plant Oils/metabolism , Biocatalysis , Hydrolysis , Moringa oleifera/chemistry , Plant Oils/chemistry
4.
Bioresour Technol ; 196: 43-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26226580

ABSTRACT

The aim of this study was to evaluate the potential of Hancornia speciosa GOMES (mangaba) seeds as a novel matrix for the production of bio-oil. The study was divided into three steps: (i) characterization of the biomass (through elemental analysis (CHN), infrared spectroscopy (FTIR-ATR), thermogravimetry (TG), and determination of biomass composition; (ii) pyrolysis of mangaba seed to obtain the bio-oil; and (iii) characterization of the bio-oil (thermogravimetry and gas chromatography/mass spectrometry-GC/qMS). The TG of the sample showed a mass loss of around 90% in 450°C. In the pyrolysis experiments the variables included temperature (450 and 600°C), sample mass (5 and 11g) and prior heating (with or without), with the best conditions of 600°C, 11g of seeds and prior heating of the furnace. The GC/qMS analysis identified carboxylic acids and hydrocarbons as the major components, besides the presence of other compounds such as furanes, phenols, nitriles, aldehydes, ketones, and amides.


Subject(s)
Biofuels/analysis , Hot Temperature , Seeds/chemistry , Biomass , Gas Chromatography-Mass Spectrometry , Lamiaceae/chemistry , Phenols/analysis , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
5.
J Chromatogr A ; 1216(14): 2860-5, 2009 Apr 03.
Article in English | MEDLINE | ID: mdl-18929361

ABSTRACT

In this work the higher peak capacity and resolution of comprehensive two-dimensional gas chromatography (GCxGC) has been successfully applied, for the first time, to tentatively identify several polar organic compounds of organic extracts of aqueous phases resulting from microwave demulsification process of water-in-crude oil emulsions. Results have shown that higher temperatures and longer exposure time to microwave irradiation produced water phases with a wider variety of polar organic compounds. The microwave process showed to be suitable for the extraction of several polar compounds classes of petroleum. The proposed microwave extraction method and GCxGC identification of polar compounds of petroleum samples are of practical interest for the petrochemical industry due to corrosion and related problems associated with these polar compounds in refinery equipments. The GCxGC/time-of-flight MS technique shows to be very important in the total separation of different classes of compounds and allows the identification of many compounds in these classes.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Organic Chemicals/analysis , Petroleum/analysis , Water/analysis , Chemical Fractionation , Emulsions , Hot Temperature , Microwaves , Organic Chemicals/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...