Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Braz J Microbiol ; 52(2): 491-501, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33651333

ABSTRACT

Filamentous fungus Purpureocillium lilacinum is an emerging pathogen that infects immunocompromised and immunocompetent individuals and is resistant to several azole molecules. Although azole resistance mechanisms are well studied in Aspergillus sp. and Candida sp., there are no studies to date reporting P. lilacinum molecular response to these molecules. The aim of this study was to describe P. lilacinum molecular mechanisms involved in antifungal response against fluconazole and itraconazole. Transcriptomic analyses showed that gene expression modulation takes place when P. lilacinum is challenged for 12 h with fluconazole (64 µg/mL) or itraconazole (16 µg/mL). The antifungals acted on the ergosterol biosynthesis pathway, and two homologous genes coding for cytochrome P450 51 enzymes were upregulated. Genes coding for efflux pumps, such as the major facilitator superfamily transporter, also displayed increased expression in the treated samples. We propose that P. lilacinum develops antifungal responses by raising the expression levels of cytochrome P450 enzymes and efflux pumps. Such modulation could confer P. lilacinum high levels of target enzymes and could lead to the constant withdrawal of antifungals, which would force an increase in the administration of antifungal medications to achieve fungal morbidity or mortality. The findings in this work could aid in the decision-making for treatment strategies in cases of P. lilacinum infection.


Subject(s)
Antifungal Agents/pharmacology , Fluconazole/pharmacology , Hypocreales/drug effects , Hypocreales/genetics , Itraconazole/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Drug Resistance, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/drug effects , Humans , Hypocreales/metabolism , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology , Transcriptome/drug effects
2.
Biotechnol Lett ; 43(1): 143-152, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33130980

ABSTRACT

OBJECTIVE: To develop recombinant factor IX (FIX) variants with augmented clotting activity. RESULTS: We generated three new variants, FIX-YKALW, FIX-ALL and FIX-LLW, expressed in SK-Hep-1 cells and characterized in vitro and in vivo. FIX-YKALW showed the highest antigen expression level among the variants (2.17 µg-mL), followed by FIX-LLW (1.5 µg-mL) and FIX-ALL (0.9 µg-mL). The expression level of FIX variants was two-five fold lower than FIX-wild-type (FIX-WT) (4.37 µg-mL). However, the biological activities of FIX variants were 15-31 times greater than FIX-WT in the chromogenic assay. Moreover, the new variants FIX-YKALW, FIX-LLW and FIX-ALL also presented higher specific activity than FIX-WT (17, 20 and 29-fold higher, respectively). FIX variants demonstrated a better clotting time than FIX-WT. In hemophilia B mice, we observed that FIX-YKALW promoted hemostatic protection. CONCLUSION: We have developed three improved FIX proteins with potential for use in protein replacement therapy for hemophilia B.


Subject(s)
Coagulants , Factor IX , Recombinant Proteins , Animals , Blood Coagulation/drug effects , Cell Line , Coagulants/chemistry , Coagulants/metabolism , Coagulants/pharmacology , Factor IX/chemistry , Factor IX/genetics , Factor IX/metabolism , Factor IX/pharmacology , Humans , Mice , Mice, Inbred C57BL , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
3.
Methods Mol Biol ; 1674: 49-61, 2018.
Article in English | MEDLINE | ID: mdl-28921427

ABSTRACT

The gamma-carboxylated proteins belong to a family of proteins that depend on vitamin K for normal biosynthesis. The major representative gamma-carboxylated proteins are the coagulation system proteins, for example, factor VII, factor IX, factor X, prothrombin, and proteins C, S, and Z. These molecules have harbored posttranslational modifications, such as glycosylation and gamma-carboxylation, and for this reason they need to be produced in mammalian cell lines. Human cells lines have emerged as the most promising alternative to the production of gamma-carboxylated proteins. In this chapter, the methods to generate human cells as a platform to produce gamma-carboxylated proteins, for example the coagulation factors VII and IX, are presented. From the cell line modification up to the vitamin K adaptation of the produced cells is described in the protocols presented in this chapter.


Subject(s)
Recombinant Proteins/metabolism , Animals , Cell Line , Factor IX/metabolism , Factor VII/metabolism , Factor X/metabolism , HEK293 Cells , Humans , Protein Processing, Post-Translational/physiology , Prothrombin/metabolism , Vitamin K/metabolism
4.
Protein Expr Purif ; 137: 26-33, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28651975

ABSTRACT

Recombinant factor VII (rFVII) is the main therapeutic choice for hemophilia patients who have developed inhibitory antibodies against conventional treatments (FVIII and FIX). Because of the post-translational modifications, rFVII needs to be produced in mammalian cell lines. In this study, for the first time, we have shown efficient rFVII production in HepG2, Sk-Hep-1, and HKB-11 cell lines. Experiments in static conditions for a period of 96 h showed that HepG2-FVII produced the highest amounts of rhFVII, with an average of 1843 ng/mL. Sk-hep-1-FVII cells reached a maximum protein production of 1432 ng/mL and HKB-11-FVII cells reached 1468 ng/mL. Sk-Hep-1-rFVII and HKB-11-rFVII were selected for the first step of scale-up. Over 10 days of spinner flask culture, HKB-11 and SK-Hep-1 cells showed a cumulative production of rFVII of 152 µg and 202.6 µg in 50 mL, respectively. Thus, these human cell lines can be used for an efficient production of recombinant FVII. With more investment in basic research, human cell lines can be optimized for the commercial production of different bio therapeutic proteins.


Subject(s)
Factor VII , Gene Expression , Cell Line , Factor VII/biosynthesis , Factor VII/genetics , Factor VII/isolation & purification , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
5.
Biotechnol Lett ; 37(5): 991-1001, 2015 May.
Article in English | MEDLINE | ID: mdl-25650340

ABSTRACT

Ligation-mediated-PCR was performed followed by the mapping of 177 and 150 integration sites from HepG2 and Hek293 transduced with chimera vector carrying recombinant human Factor IX (rhFIX) cDNA, respectively. The sequences were analyzed for chromosome preference, CpG, transcription start site (TSS), repetitive elements, fragile sites and target genes. In HepG2, rhFIX was had an increased preference for chromosomes 6 and 17; the median distance to the nearest CpG islands was 15,240 base pairs and 37 % of the integrations occurred in RefSeq genes. In Hek293, rhFIX had an increased preference for chromosome 5; the median distance to the nearest CpG islands was 209,100 base pairs and 74 % of the integrations occurred in RefSeq genes. The integrations in both cell lines were distant from the TSS. The integration patterns associated with this vector are different in each cell line.


Subject(s)
Factor IX/genetics , Factor IX/metabolism , Moloney murine leukemia virus/physiology , Moloney murine sarcoma virus/physiology , Virus Integration , Cell Line , Genetic Vectors , Humans , Moloney murine leukemia virus/genetics , Moloney murine sarcoma virus/genetics , Polymerase Chain Reaction , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transduction, Genetic
6.
Methods Mol Biol ; 1258: 223-40, 2015.
Article in English | MEDLINE | ID: mdl-25447867

ABSTRACT

The most important properties of a protein are determined by its primary structure, its amino acid sequence. However, protein features can be also modified by a large number of posttranslational modifications. These modifications can occur during or after the synthesis process, and glycosylation appears as the most common posttranslational modification. It is estimated that 50% of human proteins have some kind of glycosylation, which has a key role in maintaining the structure, stability, and function of the protein. Besides, glycostructures can also influence the pharmacokinetics and immunogenicity of the protein. Although the glycosylation process is a conserved mechanism that occurs in yeast, plants, and animals, several studies have demonstrated significant differences in the glycosylation pattern in recombinant proteins expressed in mammalian, yeast, and insect cells. Thus, currently, important efforts are being done to improve the systems for the expression of recombinant glycosylated proteins. Among the different mammalian cell lines used for the production of recombinant proteins, a significant difference in the glycosylation pattern that can alter the production and/or activity of the protein exists. In this context, human cell lines have emerged as a new alternative for the production of human therapeutic proteins, since they are able to produce recombinant proteins with posttranslational modifications similar to its natural counterpart and reduce potential immunogenic reactions against nonhuman epitopes. This chapter describes the steps necessary to produce a recombinant glycoprotein in a human cell line in small scale and also in bioreactors.


Subject(s)
Cell Line/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Animals , Bioreactors , Glycosylation , Humans , Protein Processing, Post-Translational/genetics
7.
Recent Pat Biotechnol ; 8(2): 165-71, 2014.
Article in English | MEDLINE | ID: mdl-25185983

ABSTRACT

The industrial production of recombinant proteins preferentially requires the generation of stable cell lines expressing proteins in a quick, relatively facile, and a reproducible manner. Different methods are used to insert exogenous DNA into the host cell, and choosing the appropriate producing cell is of paramount importance for the efficient production and quality of the recombinant protein. This review addresses the advances in recombinant protein production in mammalian cell lines, according to key patents from the last 30 years.


Subject(s)
Recombinant Proteins/biosynthesis , Animals , Antibodies/genetics , Antibodies/metabolism , Blood Coagulation Factors/genetics , Blood Coagulation Factors/metabolism , Cell Line , Culture Media/chemistry , Escherichia coli/metabolism , Fungi/metabolism , Growth Hormone/genetics , Growth Hormone/metabolism , Humans , Patents as Topic , Plasmids/genetics , Plasmids/metabolism , Recombinant Proteins/genetics
8.
Rev Bras Hematol Hemoter ; 36(3): 213-8, 2014.
Article in English | MEDLINE | ID: mdl-25031062

ABSTRACT

OBJECTIVE: Nowadays recombinant factor VIII is produced in murine cells including in Chinese hamster ovary (CHO) and baby hamster kidney cells (BHK). Previous studies, using the murine leukemia virus-derived retroviral vector pMFG-FVIII-P140K, modified two recombinant human cell lines, HepG2 and Hek293 to produce recombinant factor VIII. In order to characterize these cells, the present study aimed to analyze the integration pattern of retroviral vector pMFG-FVIII-P140K. METHODS: This study used ligation-mediated polymerase chain reaction to locate the site of viral vector integration by sequencing polymerase chain reaction products. The sequences were compared to genomic databases to characterize respective clones. RESULTS: The retroviral vector presented different and non-random profiles of integration between cells lines. A preference of integration for chromosomes 19, 17 and 11 was observed for HepG2FVIIIdB/P140K and chromosome 9 for Hek293FVIIIdB/P140K. In genomic regions such as CpG islands and transcription factor binding sites, there was no difference in the integration profiles for both cell lines. Integration in intronic regions of encoding protein genes (RefSeq genes) was also observed in both cell lines. Twenty percent of integrations occurred at fragile sites in the genome of the HepG2 cell line and 17% in Hek293. CONCLUSION: The results suggest that the cell type can affect the profile of chromosomal integration of the retroviral vector used; these differences may interfere in the level of expression of recombinant proteins.

9.
Rev. bras. hematol. hemoter ; 36(3): 213-218, May-Jun/2014. tab, graf
Article in English | LILACS | ID: lil-713680

ABSTRACT

OBJECTIVE: Nowadays recombinant factor VIII is produced in murine cells including in Chinese hamster ovary (CHO) and baby hamster kidney cells (BHK). Previous studies, using the murine leukemia virus-derived retroviral vector pMFG-FVIII-P140K, modified two recombinant human cell lines, HepG2 and Hek293 to produce recombinant factor VIII. In order to characterize these cells, the present study aimed to analyze the integration pattern of retroviral vector pMFG-FVIII-P140K. METHODS: This study used ligation-mediated polymerase chain reaction to locate the site of viral vector integration by sequencing polymerase chain reaction products. The sequences were compared to genomic databases to characterize respective clones. RESULTS: The retroviral vector presented different and non-random profiles of integration between cells lines. A preference of integration for chromosomes 19, 17 and 11 was observed for HepG2FVIIIdB/P140K and chromosome 9 for Hek293FVIIIdB/P140K. In genomic regions such as CpG islands and transcription factor binding sites, there was no difference in the integration profiles for both cell lines. Integration in intronic regions of encoding protein genes (RefSeq genes) was also observed in both cell lines. Twenty percent of integrations occurred at fragile sites in the genome of the HepG2 cell line and 17% in Hek293. CONCLUSION: The results suggest that the cell type can affect the profile of chromosomal integration of the retroviral vector used; these differences may interfere in the level of expression of recombinant proteins. .


Subject(s)
Factor VIII , Virus Integration , Leukemia Virus, Murine , Hemophilia A
10.
Exp Mol Pathol ; 91(3): 664-72, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21930125

ABSTRACT

The LX-2 cell line has characteristics of hepatic stellate cells (HSCs), which are considered pericytes of the hepatic microcirculatory system. Recent studies have suggested that HSCs might have mesenchymal origin. We have performed an extensive characterization of the LX-2 cells and have compared their features with those of mesenchymal cells. Our data show that LX-2 cells have a phenotype resembling activated HSCs as well as bone marrow-derived mesenchymal stem cells (BM-MSCs). Our immunophenotypic analysis showed that LX-2 cells are positive for activated HSC markers (αSMA, GFAP, nestin and CD271) and classical mesenchymal makers (CD105, CD44, CD29, CD13, CD90, HLA class-I, CD73, CD49e, CD166 and CD146) but negative for the endothelial marker CD31 and endothelial progenitor cell marker CD133 as well as hematopoietic markers (CD45 and CD34). LX-2 cells also express the same transcripts found in immortalized and primary BM-MSCs (vimentin, annexin 5, collagen 1A, NG2 and CD140b), although at different levels. We show that LX-2 cells are capable to differentiate into multilineage mesenchymal cells in vitro and can stimulate new blood vessel formation in vivo. LX-2 cells appear not to possess tumorigenic potential. Thus, the LX-2 cell line behaves as a multipotent cell line with similarity to BM-MSCs. This line should be useful for further studies to elucidate liver regeneration mechanisms and be the foundation for development of hepatic cell-based therapies.


Subject(s)
Cell Line , Hepatic Stellate Cells , Mesenchymal Stem Cells , Animals , Antigens, CD/metabolism , Bone Marrow Cells/cytology , Cell Differentiation , Cell Transplantation , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/metabolism , Humans , Immunophenotyping , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, SCID , Multipotent Stem Cells/cytology , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/pathology , Neovascularization, Pathologic , Osteogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...