Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Neurotoxicol Teratol ; 84: 106948, 2021.
Article in English | MEDLINE | ID: mdl-33418068

ABSTRACT

The morphogenesis of the head of vertebrates is a process that involves rapid growth and dynamic movements of various cell populations, including the neural crest cells (NCC). These pluripotent cells generated during neurulation have high proliferative and migratory capacity but xenobiotic agents can affect these migratory periods and cause congenital malformations. Lead (Pb) is the most common toxic metal in the environment and a potent teratogen that can affect growth and induce malformations. Despite the known toxic effects of Pb, there is a gap in knowledge about the impact of realistic concentrations of Pb at critical periods of early development. Here, we evaluated mortality, embryonic morphology, NCC migration, and the amount of Pb deposition in chicken embryos after 3 to 4 days of exposure. One of the most interesting observations in this study is that only about 34% of the injected Pb was present in the embryos after 4 days. We observed that exposure to Pb, even under low concentrations, increased mortality and the occurrence of malformations during embryonic development, especially in the cephalic region (CR). Although Pb was found widely distributed in the CR, no relation between its presence and the migration routes of cephalic NCC was observed. But the number of NCC and their migratory distance were reduced. These changes are consistent and explain the morphological anomalies described in this study, which also correlates with the morphofunctional abnormalities reported in the literature. Therefore, this study highlights the concern of exposure to low concentrations of this metal.


Subject(s)
Lead Poisoning, Nervous System/pathology , Neural Crest/pathology , Abnormalities, Drug-Induced/pathology , Animals , Biological Availability , Brain/abnormalities , Brain/pathology , Cell Movement , Chick Embryo , Embryonic Development/drug effects , Lead/metabolism , Lead/pharmacokinetics , Lead/toxicity , Lead Poisoning, Nervous System/mortality , Morphogenesis , Nitrates/toxicity
2.
Arq. Inst. Biol ; 86: e0492017, 2019. ilus, tab
Article in English | LILACS, VETINDEX | ID: biblio-1024585

ABSTRACT

The present study had the objective of evaluating the longevity of A. mellifera workers fed on a diet incorporating commercial entomopathogens, Beauveria bassiana, and Bacillus thuringiensis. It also aimed at verifying possible morphological alterations in the midgut. To this purpose, the entomopathogens used were B. bassiana (Product A) (5.0 × 1011 viable conidia.kg-1), B. thuringiensis (Product B) (2.5 × 109 viable spores.g-1), and B. thuringiensis (Product C) (1.0 × 109 viable spores.g-1); and two controls: T1: sterilized distilled water, and T2: sterilized distilled water + Tween 80® (0.01%). For the bioassays, 2 mL of each treatment were incorporated into Candy paste. For each treatment, 80 bees were individually in flat bottom glass tubes (2.5 cm Ø) covered with voile, containing a piece of cotton soaked in water and Candy paste. These tubes were stored in a B.O.D (30 ± 2°C, R.H 70% ± 10%, 12 h), and mortality was evaluated every six hours, for 10 days. Soon after verifying mortality, two bees per treatment were selected for the removal of their midgut. Midgut samples were processed using standard methodology for Scanning Electron Microscopy (SEM). It was verified that products A, B, and C reduced the longevity of bees when compared to T1 and T2 controls. In the qualitative analyses carried out using SEM, it was not possible to observe external or internal morphological alterations to midgut tissues. Although products A, B, and C cause a reduction in longevity, their presence was not verified when tissues were analyzed using SEM.(AU)


No presente trabalho objetivou-se avaliar a longevidade de operárias de A. mellifera alimentadas com dieta incorporada com os entomopatógenos comerciais Beauveria bassiana e Bacillus thuringiensis, e verificar possíveis alterações morfológicas em seu mesêntero. Para isso, os entomopatógenos utilizados foram B. bassiana (Produto A) (5,0 × 1011 conídios viáveis.kg-1), B. thuringiensis (Produto B) (2,5 × 109 esporos viáveis.g-1), B. thuringiensis (Produto C) (1,0 × 109 esporos viáveis.g-1); e dois controles: T1: água destilada esterilizada e T2: água destilada esterilizada + Tween 80® (0,01%). Para os bioensaios, 2 mL de cada tratamento foram incorporados à pasta Cândi. Para cada tratamento, 80 abelhas foram acondicionadas, individualmente, em tubos de vidro de fundo chato (2,5 cm Ø), cobertos com voile, contendo um pedaço de algodão embebido em água e pasta Cândi. Os tubos contendo as abelhas foram acondicionados em B.O.D (30 ± 2°C, U.R. 70% ± 10%, 12 h), e a mortalidade foi avaliada a cada seis horas, durante 10 dias. Logo após a verificação da mortalidade, foram separadas duas abelhas por tratamento para a retirada do mesêntero. Essas amostras foram processadas em metodologia padrão para Microscopia Eletrônica de Varredura (MEV). Verificou-se que os produtos A, B e C reduziram a longevidade das abelhas quando comparados aos controles T1 e T2. Nas análises qualitativas realizadas com MEV, não foi possível observar alterações morfológicas externas ou internas nos tecidos do mesêntero. Apesar dos produtos A, B e C causarem redução na longevidade, sua presença não foi verificada quando os tecidos foram analisados por MEV.(AU)


Subject(s)
Bees , Longevity , Bacillus thuringiensis , Beauveria
3.
Acta Histochem ; 116(1): 138-47, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23916864

ABSTRACT

Melanoblasts are positively stimulated to migrate in the dorsolateral pathway of the avian embryo by ephrins, but are inhibited by PNA-binding glycoconjugates. We analyzed the potential role of these molecules in the Japanese Silky fowl, which displays intense internal pigmentation. The distribution of ephrin ligands was analyzed using Eph receptor-human Fc fusion proteins. Glycoconjugates were labeled using PNA-FITC. In Japanese Silky embryos, ventral areas, including the anterior- and posterior-half somites, expressed ephrin-B1 in a pattern that correlates with the atypical migratory pathways taken by Japanese Silky melanoblasts. White Leghorn embryos displayed little to no ephrin-Bs in the ventral paths. Conversely, PNA-binding barrier tissues, proposed to prevent melanoblasts from migrating ventrally in White Leghorn, are missing or have significant gaps in Japanese Silky embryos. Thus, studies of a naturally occurring pigmentation mutant confirm that a combination of cues regulates melanoblast migration in the chick embryo.


Subject(s)
Avian Proteins/metabolism , Cell Movement , Embryonic Stem Cells/physiology , Ephrin-B1/metabolism , Glycoproteins/metabolism , Animals , Chick Embryo , Chickens/anatomy & histology , Chickens/metabolism , Melanocytes/physiology , Neural Crest/cytology , Neural Crest/embryology , Organ Specificity , Peanut Agglutinin/chemistry , Somites/cytology , Somites/metabolism
4.
Anat Rec A Discov Mol Cell Evol Biol ; 273(2): 705-13, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12845707

ABSTRACT

Neural crest cells give rise to many derivatives, including the neurons and glia of the peripheral nervous system, adrenomedulary cells, and melanocytes, and migrate through precise pathways that differ according to their axial level and/or state of specification. The migratory routes taken by neural crest cells are reported to be regulated by extracellular matrix molecules. We examined the possible influence of glycoconjugates on the establishment of barriers to neural crest access to ventral regions leading to the gut, by labeling stage-16-28 white Leghorn (WL) and Silky (SK) embryos with peanut agglutinin (PNA) at vagal, thoracic, and sacral levels. We observed a transitory expression of glycoconjugates that correlate with a barrier to the entrance of neural crest cells into the gut at the thoracic level, which is not present at vagal and sacral levels. In later stages, neural crest cells of melanocytic lineage were observed entering the gut in embryos of the SK chicken, a mutant with an altered pattern of pigmentation. The ventral regions occupied by melanoblasts in SK embryos were free of PNA labeling, while in WL embryos, in which PNA-positive molecules are strongly expressed, melanoblasts were restricted to peripheral regions. We suggest that PNA-binding glycoconjugates are good molecular marker for barriers that control the access of neural crest cells to the gut.


Subject(s)
Cell Movement/physiology , Gastrointestinal Tract/embryology , Gastrointestinal Tract/innervation , Glycoconjugates/metabolism , Neural Crest/embryology , Animals , Cell Communication/physiology , Cell Differentiation/physiology , Chick Embryo , Cues , Gastrointestinal Tract/cytology , Melanocytes/cytology , Melanocytes/physiology , Models, Biological , Mutation/physiology , Nerve Growth Factors/metabolism , Neural Crest/cytology , Neural Crest/metabolism , Peanut Agglutinin , Stem Cells/cytology , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...