Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Microb Cell Fact ; 23(1): 145, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778337

ABSTRACT

Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.


Subject(s)
Epitopes , Escherichia coli , Recombinant Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , Humans , Epitopes/immunology , Epitopes/genetics , Immunologic Tests/methods , Animals , COVID-19/diagnosis
2.
Fungal Biol Biotechnol ; 11(1): 5, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715132

ABSTRACT

BACKGROUND: Candida albicans is one of the most prevalent fungi causing infections in the world. Mnt1 is a mannosyltransferase that participates in both the cell wall biogenesis and biofilm growth of C. albicans. While the cell wall performs crucial functions in pathogenesis, biofilm growth is correlated with sequestration of drugs by the extracellular matrix. Therefore, antifungals targeting CaMnt1 can compromise fungal development and potentially also render Candida susceptible to drug therapy. Despite its importance, CaMnt1 has not yet been purified to high standards and its biophysical properties are lacking. RESULTS: We describe a new protocol to obtain high yield of recombinant CaMnt1 in Komagataella phaffii using methanol induction. The purified protein's identity was confirmed by MALDI-TOF/TOF mass spectroscopy. The Far-UV circular dichroism (CD) spectra demonstrate that the secondary structure of CaMnt1 is compatible with a protein formed by α-helices and ß-sheets at pH 7.0. The fluorescence spectroscopy results show that the tertiary structure of CaMnt1 is pH-dependent, with a greater intensity of fluorescence emission at pH 7.0. Using our molecular modeling protocol, we depict for the first time the ternary complex of CaMnt1 bound to its two substrates, which has enabled the identification of residues involved in substrate specificity and catalytic reaction. Our results corroborate the hypothesis that Tyr209 stabilizes the formation of an oxocarbenium ion-like intermediate during nucleophilic attack of the acceptor sugar, opposing the double displacement mechanism proposed by other reports. CONCLUSIONS: The methodology presented here can substantially improve the yield of recombinant CaMnt1 expressed in flask-grown yeasts. In addition, the structural characterization of the fungal mannosyltransferase presents novelties that can be exploited for new antifungal drug's development.

3.
Biochim Biophys Acta Proteins Proteom ; 1872(2): 140975, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38056804

ABSTRACT

Biotechnological applications of phytocystatins have garnered significant interest due to their potential applications in crop protection and improve crop resistance to abiotic stress factors. Cof1 and Wal1 are phytocystatins derived from Coffea arabica and Juglans regia, respectively. These plants hold significant economic value due to coffee's global demand and the walnut tree's production of valuable timber and widely consumed walnuts with culinary and nutritional benefits. The study involved the heterologous expression in E. coli Lemo 21(DE3), purification by immobilized metal ion affinity and size exclusion chromatography, and biophysical characterization of both phytocystatins, focusing on isolating and interconverting their monomers and dimers. The crystal structure of the domain-swapped dimer of Wal1 was determined revealing two domain-swapped dimers in the asymmetric unit, an arrangement reminiscent of the human cystatin C structure. Alphafold models of monomers and Alphafold-Multimer models of domain-swapped dimers of Cof1 and Wal1 were analyzed in the context of the crystal structure. The methodology and data presented here contribute to a deeper understanding of the oligomerization mechanisms of phytocystatins and their potential biotechnological applications in agriculture.


Subject(s)
Juglans , Humans , Juglans/genetics , Trees , Escherichia coli/genetics
4.
Biomolecules ; 13(3)2023 03 22.
Article in English | MEDLINE | ID: mdl-36979510

ABSTRACT

The number of multidrug-resistant pathogenic microorganisms has been growing in recent years, most of which is due to the inappropriate use of the commercial antibiotics that are currently available. The dissemination of antimicrobial resistance represents a serious global public health problem. Thus, it is necessary to search for and develop new drugs that can act as antimicrobial agents. Antimicrobial peptides are a promising alternative for the development of new therapeutic drugs. Anurans' skin glands are a rich source of broad-spectrum antimicrobial compounds and hylids, a large and diverse family of tree frogs, are known as an important source of antimicrobial peptides. In the present study, two novel antimicrobial peptides, named Raniseptins-3 and -6, were isolated from Boana raniceps skin secretion and their structural and biological properties were evaluated. Raniseptins-3 and -6 are cationic, rich in hydrophobic residues, and adopt an α-helix conformation in the presence of SDS (35 mM). Both peptides are active against Gram-negative bacteria and Gram-positive pathogens, with low hemolytic activity at therapeutic concentrations. No activity was observed for yeasts, but the peptides are highly cytotoxic against B16F10 murine melanoma cells and NIH3T3 mouse fibroblast cells. None of the tested compounds showed improvement trends in the MTT and LDH parameters of MHV-3 infected cells at the concentrations tested.


Subject(s)
Anti-Infective Agents , Antimicrobial Cationic Peptides , Animals , Mice , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Peptides , NIH 3T3 Cells , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anura , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Microbial Sensitivity Tests , Skin/chemistry
5.
Pathogens ; 12(2)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36839574

ABSTRACT

BACKGROUND: visceral leishmaniasis (VL) is a critical public health problem in over ninety countries. The control measures adopted in Brazil have been insufficient when it comes to preventing the spread of this overlooked disease. In this context, a precise diagnosis of VL in dogs and humans could help to reduce the number of cases of this disease. Distinct studies for the diagnosis of VL have used single recombinant proteins in serological assays; however, the results have been variable, mainly in relation to the sensitivity of the antigens. In this context, the development of multiepitope-based proteins could be relevant to solving such problem. METHODS: a chimeric protein (rMELEISH) was constructed based on amino acid sequences from kinesin 39 (k39), alpha-tubulin, and heat-shock proteins HSP70 and HSP 83.1, and tested in enzyme-linked immunosorbent (ELISA) for the detection of L. infantum infection using canine (n = 140) and human (n = 145) sera samples. RESULTS: in the trials, rMELEISH was able to discriminate between VL cases and cross-reactive diseases and healthy samples, with sensitivity and specificity values of 100%, as compared to the use of a soluble Leishmania antigenic extract (SLA). CONCLUSIONS: the preliminary data suggest that rMELEISH has the potential to be tested in future studies against a larger serological panel and in field conditions for the diagnosis of canine and human VL.

6.
Biochim Biophys Acta Biomembr ; 1865(1): 184057, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36240866

ABSTRACT

Ts17 was purified from the venom of the scorpion Tityus serrulatus, the most dangerous scorpion species in Brazil. The activity on Nav1.1-Nav1.7 channels was electrophysiologically characterized by patch-clamp technique. Ts17 amino acid sequence indicated high similarity to alpha-scorpion toxins; however, it presented beta-toxin activity, altering the kinetics of the Na+-channels. The most affected subtypes during activation (with and without prepulse) and inactivation phases were Nav1.2 and Nav1.5, respectively. For recovery from inactivation, the most affected voltage-gated sodium channel was Nav1.5. Circular dichroism spectra showed that Ts17 presents mainly ß-sheet and unordered structures at all analyzed pHs, and the maximum value of α-helix was found at pH 4.0 (13.3 %). Based on the results, Ts17 might be used as a template to develop a new cardiac drug. Key contribution Purification of Ts17 from Tityus serrulatus, electrophysiological characterization of Ts17 on voltage-gated sodium channel subtypes, ß-toxin classification.


Subject(s)
Scorpion Venoms , Voltage-Gated Sodium Channels , Animals , Scorpions/chemistry , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry , Amino Acid Sequence , Patch-Clamp Techniques
7.
Peptides ; 159: 170900, 2023 01.
Article in English | MEDLINE | ID: mdl-36336169

ABSTRACT

Amphibians have a great diversity of bioactive peptides in their skin. The cDNA prepro-peptide sequencing allowed the identification of five novel mature peptides expressed in the skin of Boana pulchella, four with similar sequences to hylin peptides having a cationic amphipathic-helical structure. Whole mature peptides and some of their fragments were chemically-synthesized and tested against Gram-positive and Gram-negative bacterial strains. The mature peptide hylin-Pul3 was the most active, with a MIC= 14 µM against Staphylococcus aureus. Circular dichroism assays indicated that peptides are mostly unstructured in buffer solutions. Still, adding large unilamellar vesicles composed of dimyristoyl phosphatidylcholine and dimyristoylphosphatidylglycerol increased the α-helix content of novel hylins. These results demonstrate the strong influence of the environment on peptide conformation and highlight its significance while addressing the pharmacology of peptides and their biological function in frogs.


Subject(s)
Anura , Peptides , Animals , Amino Acid Sequence , Peptides/pharmacology , Peptides/chemistry , Lipids , Circular Dichroism
8.
Sci Rep ; 12(1): 11409, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794132

ABSTRACT

Humicola grisea var. thermoidea is an aerobic and thermophilic fungus that secretes the GH11 xylanase HXYN2 in the presence of sugarcane bagasse. In this study, HXYN2 was expressed in Pichia pastoris and characterized biochemically and structurally in the presence of beechwood xylan substrate and ferulic acid (FA). HXYN2 is a thermally stable protein, as indicated by circular dichroism, with greater activity in the range of 40-50 °C and pH 5.0-9.0, with optimal temperature and pH of 50 °C and 6.0, respectively. FA resulted in a 75% increase in enzyme activity and a 2.5-fold increase in catalytic velocity, catalytic efficiency, and catalytic rate constant (kcat), with no alteration in enzyme affinity for the substrate. Fluorescence quenching indicated that FA forms a complex with HXYN2 interacting with solvent-exposed tryptophan residues. The binding constants ranged from moderate (pH 7.0 and 9.0) to strong (pH 4.0) affinity. Isothermal titration calorimetry, structural models and molecular docking suggested that hydrogen bonds and hydrophobic interactions occur in the aglycone region inducing conformational changes in the active site driven by initial and final enthalpy- and entropy processes, respectively. These results indicate a potential for biotechnological application for HXYN2, such as in the bioconversion of plant residues rich in ferulic acid.


Subject(s)
Cellulose , Saccharum , Ascomycota , Catalysis , Coumaric Acids , Molecular Docking Simulation
9.
Biochim Biophys Acta Proteins Proteom ; 1869(1): 140541, 2021 01.
Article in English | MEDLINE | ID: mdl-32947025

ABSTRACT

Phytocystatins are a family of plant cysteine-protease inhibitors of great interest due to their biotechnological application in culture improvement. It was shown that their expression in plants increases resistance to herbivory by insects and improves tolerance to both biotic and abiotic stress factors. In this work, owing to the economical relevance of the source organism, a phytocystatin from hop (Humulus lupulus), Hop1, was produced by heterologous expression in E. coli Lemo21 (DE3) cultivated in auto-inducing ZYM-5052 medium and purified by immobilized metal ion affinity and size exclusion chromatography. Thermal denaturation assays by circular dichroism showed that Hop1 exhibited high melting temperatures ranging from 82 °C to 85 °C and high thermal stability at a wide pH range, with ΔG25's higher than 12 kcal/mol. At 20 °C and pH 7.6, the dimeric conformation of the protein is favored according to size exclusion chromatography and analytical ultracentrifugation data, although monomers and higher order oligomers could still be detected in a lesser extent. The crystal structure of Hop1 was solved in the space groups P 2 21 21 and C 2 2 21 at resolutions of 1.80 Å and 1.68 Å, respectively. In both models, Hop1 is folded as a domain-swapped dimer where the first inhibitory loop undergoes a significant structural change and interacts with their equivalent from the other monomer forming a long antiparallel beta strand, leading to loss of inhibitory activity.


Subject(s)
Cystatins/chemistry , Cysteine Proteinase Inhibitors/chemistry , Humulus/chemistry , Plant Proteins/chemistry , Cloning, Molecular , Crystallography, X-Ray , Cystatins/genetics , Cystatins/metabolism , Cysteine Proteinase Inhibitors/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hot Temperature , Hydrogen-Ion Concentration , Models, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics
10.
Antibiotics (Basel) ; 9(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967114

ABSTRACT

Amphibian skin secretions are abundant in bioactive compounds, especially antimicrobial peptides. These molecules are generally cationic and rich in hydrophobic amino acids, have an amphipathic structure and adopt an α-helical conformation when in contact with microorganisms membranes. In this work, we purified and characterized Figainin 1, a novel antimicrobial and antiproliferative peptide from the cutaneous secretion of the frog Boana raniceps. Figainin 1 is a cationic peptide with eighteen amino acid residues-rich in leucine and isoleucine, with an amidated C-terminus-and adopts an α-helical conformation in the presence of trifluoroethanol (TFE). It displayed activity against Gram-negative and especially Gram-positive bacteria, with MIC values ranging from 2 to 16 µM, and showed an IC50 value of 15.9 µM against epimastigote forms of T. cruzi; however, Figanin 1 did not show activity against Candida species. This peptide also showed cytolytic effects against human erythrocytes with an HC50 of 10 µM, in addition to antiproliferative activity against cancer cells and murine fibroblasts, with IC50 values ranging from 10.5 to 13.7 µM. Despite its adverse effects on noncancerous cells, Figainin 1 exhibits interesting properties for the development of new anticancer agents and anti-infective drugs against pathogenic microorganisms.

11.
Sci Rep ; 10(1): 11680, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669617

ABSTRACT

Bioactive plant peptides have received considerable interest as potential antihypertensive agents with potentially fewer side effects than antihypertensive drugs. Here, the blood pressure-lowering effects of the Bowman-Birk protease inhibitor, BTCI, and its derived peptides, PepChy and PepTry, were investigated using normotensive (Wistar-WR) and spontaneously hypertensive rats (SHR). BTCI inhibited the proteases trypsin and chymotrypsin, respectively, at 6 µM and 40 µM, a 10-fold greater inhibition than observed with PepTry (60 µM) and PepChy (400 µM). These molecules also inhibited angiotensin converting enzyme (ACE) with IC50 values of 54.6 ± 2.9; 24.7 ± 1.1; and 24.4 ± 1.1 µM, respectively, occluding its catalytic site, as indicated by molecular docking simulation, mainly for PepChy and PepTry. Gavage administration of BTCI and the peptides promoted a decrease of systolic and diastolic blood pressure and an increase of renal and aortic vascular conductance. These effects were more expressive in SHR than in WR. Additionally, BTCI, PepChy and PepTry promoted coronary vasodilation and negative inotropic effects in isolated perfused hearts. The nitric oxide synthase inhibitor blunted the BTCI and PepChy, with no cardiac effects on PepTry. The findings of this study indicate a therapeutic potential of BTCI and its related peptides in the treatment of hypertension.


Subject(s)
Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Hypertension/drug therapy , Myocardial Contraction/drug effects , Peptides/pharmacology , Trypsin Inhibitor, Bowman-Birk Soybean/pharmacology , Animals , Antihypertensive Agents/chemistry , Binding Sites , Chymotrypsin/chemistry , Chymotrypsin/metabolism , Coronary Vessels/drug effects , Coronary Vessels/physiopathology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hypertension/enzymology , Hypertension/physiopathology , Male , Molecular Docking Simulation , NG-Nitroarginine Methyl Ester/chemistry , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type III/antagonists & inhibitors , Nitric Oxide Synthase Type III/chemistry , Nitric Oxide Synthase Type III/metabolism , Peptides/chemical synthesis , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Rats , Rats, Inbred SHR , Rats, Wistar , Trypsin/chemistry , Trypsin/metabolism , Trypsin Inhibitor, Bowman-Birk Soybean/chemistry , Vasodilation/drug effects
12.
Biomolecules ; 10(5)2020 05 20.
Article in English | MEDLINE | ID: mdl-32443921

ABSTRACT

In recent years, the number of new antimicrobial drugs launched on the market has decreased considerably even though there has been an increase in the number of resistant microbial strains. Thus, antimicrobial resistance has become a serious public health problem. Amphibian skin secretions are a rich source of host defense peptides, which generally are cationic and hydrophobic molecules, with a broad-spectrum of activity. In this study, one novel multifunctional defense peptide was isolated from the skin secretion of the Chaco tree frog, Boana raniceps. Figainin 2 (1FLGAILKIGHALAKTVLPMVTNAFKPKQ28) is cationic and hydrophobic, adopts an α-helical structure in 50% (v/v) trifluoroethanol (TFE), and is thermally stable. This peptide exhibited activity against Gram-negative and Gram-positive pathogenic bacteria arboviruses, T. cruzi epimastigotes; however, it did not show activity against yeasts. Figainin 2 also showed antiproliferative activity on cancer cells, is moderately active on human erythrocytes, and activates the oxidative burst in human neutrophils.


Subject(s)
Amphibian Proteins/metabolism , Anura/metabolism , Defensins/metabolism , Skin/metabolism , Amphibian Proteins/chemistry , Amphibian Proteins/pharmacology , Animals , Arboviruses/drug effects , Bacteria/drug effects , Candida/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Defensins/chemistry , Defensins/pharmacology , Hemolysis/drug effects , Humans , Neutrophils/drug effects , Protein Conformation, alpha-Helical , Trypanosoma cruzi/drug effects
13.
Arch Biochem Biophys ; 665: 79-86, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30817908

ABSTRACT

Natural inhibitors of proteases have been classified into different families, among them is the Bowman-Birk Inhibitor (BBI) family. Members of BBI have two structurally reactive loops that simultaneously inhibit trypsin and chymotrypsin. Here, we have investigated the binding of bovine trypsin by a cyclic nonapeptide, named PTRY9 (CTKSIPPQC), derived of the black-eyed pea trypsin/chymotrypsin inhibitor (BTCI) from Vigna unguiculata seeds. This peptide was synthetically produced with the disulfide bond restraining its conformation to mimic the reactive loop that inhibits trypsin. PTRY9 complexed to pancreatic bovine trypsin was crystallized in orthorhombic and trigonal space groups, P212121 and P3221, with maximum resolutions of 1.15 and 1.61 Å, respectively. The structures presented refinement parameters of Rwork = 14.52 % and Rfree = 15.59 %; Rwork = 15.60 % and Rfree = 18.78 %, and different surface area between the peptide and the enzyme of 1024 Å2 and 1070 Å2, respectively. The binding site of the PTRY9 is similar to that found for BTCI as shown by a r.m.s.d. of 0.358 Šbetween the superimposed structures and the electrostatic complementary pattern at the enzyme-peptide interface. Additionally, enzyme inhibition assays show that the affinity of trypsin for PTRY9 is smaller than that for BTCI. In vitro assays revealed that, like BTCI, this synthetic peptide is not cytotoxic for normal mammary epithelial MCF-10A cells, but exerts cytotoxic effects on MDA.MB.231 invasive human breast cancer cells.


Subject(s)
Oligopeptides/chemistry , Seeds/chemistry , Trypsin Inhibitor, Bowman-Birk Soybean/chemistry , Trypsin/chemistry , Vigna/embryology , Cell Line, Tumor , Crystallography, X-Ray , Humans
15.
J Proteomics ; 192: 102-113, 2019 02 10.
Article in English | MEDLINE | ID: mdl-30165259

ABSTRACT

Spider venoms are composed of a complex mixture of bioactive molecules. The structural and functional characterization of these molecules in the venom of the Brazilian spider Acanthoscurria natalensis, has been little explored. The venom was fractionated using reversed-phase liquid chromatography. The fraction with hyaluronidase activity was named AnHyal. The partial sequencing of AnHyal revealed the presence of a CRISP-like protein, in addition to hyaluronidase, comprising 67% coverage for hyaluronidase from Brachypelma vagans and 82% for CRISP-like protein from Grammostola rosea. 1D BN-PAGE zymogram assays of AnHyal confirmed the presence of enzymatically active 53 kDa monomer and 124 and 178 kDa oligomers. The decomposition of the complexes by 2D BN/SDS-PAGE zymogram assays showed two subunits, 53 (AnHyalH) and 44 kDa (AnHyalC), with sequence similarity to hyaluronidase and CRISP proteins, respectively. The secondary structure of AnHyal is composed by 36% of α-helix. AnHyal presented maximum activity at pH between 4.0 and 6.0 and 30 and 60 °C, showed specificity to hyaluronic acid substrate and presented a KM of 617.9 µg/mL. Our results showed that hyaluronidase and CRISP proteins can form a complex and the CRISP protein may contribute to the enzymatic activity of AnHyalH.


Subject(s)
Arthropod Proteins , Hyaluronoglucosaminidase , Spider Venoms/chemistry , Spiders/enzymology , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/isolation & purification , Enzyme Stability , Hyaluronoglucosaminidase/chemistry , Hyaluronoglucosaminidase/isolation & purification , Hydrogen-Ion Concentration , Protein Structure, Secondary , Substrate Specificity
16.
Enzyme Microb Technol ; 120: 16-22, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30396395

ABSTRACT

A 22 kDa xylanase (AtXyl1) from Aspergillus tamarii was purified by two chromatographic steps and presented preference for oat spelt (OSX), birchwood (BrX) and beechwood (BeX) xylans respectively, as substrates. AtXyl1 displays the highest activity at pH 5.5 and 55 °C and showed tolerance over a range of different phenolic compounds. The activity of AtXyl1 was not inhibited when the enzyme was incubated with ferulic acid (FA) using OSX or BrX as substrate. On the other hand, the incubation of AtXyl1 with BeX and FA resulted in an increase in enzyme activity. The molecular docking of a GH11 xylanase from Aspergillus niger with FA showed the preference for binding within the catalytic site. The position of FA was based on the presence or absence of a complexed substrate. When the enzyme from A. niger was docked in the absence of xylan in its crystal structure, FA interacted with Tyr164 and a water molecule. For the enzyme socked with xylo-oligosaccharides, FA interacted with Ser94, Tyr89 and the xylo-oligosaccharide present in the catalytic site. Thermodynamic parameters from the reaction of AtXyl1 with different xylans and FA indicate that FA can cause a conformational change in the enzyme, and this can influence the substrate fitting and makes the enzyme tolerant or active toward the substrate. Our findings suggest that enzyme activation or tolerance to phenolic compounds can be correlated to subtle changes in enzyme conformation due to the presence of the phenolic compound.


Subject(s)
Aspergillus/enzymology , Coumaric Acids/metabolism , Endo-1,4-beta Xylanases/metabolism , Oligosaccharides/metabolism , Xylans/metabolism , Catalytic Domain , Endo-1,4-beta Xylanases/chemistry , Enzyme Stability , Hydrogen-Ion Concentration , Molecular Docking Simulation , Substrate Specificity
17.
Biotechnol Lett ; 40(9-10): 1395-1406, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30062528

ABSTRACT

OBJECTIVE: To isolate putative lipase enzymes by screening a Cerrado soil metagenomic library with novel features. RESULTS: Of 6720 clones evaluated, Clone W (10,000 bp) presented lipolytic activity and four predicted coding sequences, one of them LipW. Characterization of a predicted esterase/lipase, LipW, showed 28% sequence identity with an arylesterase from Pseudomonas fluorescens (pdb|3HEA) from protein database (PDB). Phylogenetic analysis showed LipW clustered with family V lipases; however, LipW was clustered in different subclade belonged to family V, suggesting a different subgroup of family V. In addition, LipW presented a difference in family V GH motif, a glycine replaced by a serine in GH motif. Estimated molecular weight and stokes radius values of LipW were 29,338.67-29,411.98 Da and 2.58-2.83 nm, respectively. Optimal enzyme activity was observed at pH 9.0-9.5 and at 40 °C. Circular dichroism analysis estimated secondary structures percentages as approximately 45% α-helix and 15% ß-sheet, consistent with the 3D structure predicted by homology. CONCLUSION: Our results demonstrate the isolation of novel family V lipolytic enzyme with biotechnological applications from a metagenomic library.


Subject(s)
Esterases/genetics , Esterases/metabolism , Soil Microbiology , Amino Acid Motifs , Brazil , Circular Dichroism , Cloning, Molecular , Esterases/chemistry , Metagenome , Models, Molecular , Molecular Weight , Phylogeny , Protein Conformation , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spectrometry, Fluorescence
18.
Colloids Surf B Biointerfaces ; 167: 474-482, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29723819

ABSTRACT

One of the major challenges in the administration of therapeutic proteins involves delivery limitations. Liposomes are well-known drug delivery systems (DDS) that have been used to overcome this drawback; nevertheless, low protein entrapment efficiency (EE) still limits their wide biomedical application on a commercial scale. In the present work, different methods for protein entrapment into liposomes were tested in order to obtain tailored DDS platforms for multiple biomedical applications. The protein used as model was the Black-eyed pea Trypsin and Chymotrypsin Inhibitor (BTCI), a member of the Bowman-Birk protease inhibitor family (BBIs), which has been largely explored for its potential application in many biomedical therapies. We optimized reverse-phase evaporation (REV) and freeze/thaw (F/T) entrapment methods, using a cationic lipid matrix to entrap expressive amounts of BTCI (∼100 µM) in stable liposomes without affecting its protease inhibition activity. The influence of various parameters (e.g. entrapment method, liposome composition, buffer type) on particle size, charge, polydispersity, and EE of liposomes was investigated to provide an insight on how to control such parameters in view of obtaining a high entrapment yield. In addition, BTCI liposome platforms obtained herein showed to be versatile vesicles, allowing surface modification with moieties/polymers of interest (e.g. PEG, transferrin). The aforementioned results are relevant to focusing on the entrapment of other promising BBIs or protein agents sharing similar structural features. These findings encourage future studies to investigate the advantages of using the liposome platforms presented herein to broaden the use of this type of DDS for BBI biomedical applications.


Subject(s)
Drug Delivery Systems/methods , Liposomes/chemistry , Vigna/metabolism , Biocatalysis/drug effects , Chymotrypsin/metabolism , Particle Size , Plant Proteins/administration & dosage , Plant Proteins/chemistry , Polyethylene Glycols/chemistry , Surface Properties , Transferrin/chemistry , Trypsin/metabolism
19.
Sci Rep ; 8(1): 6614, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29700324

ABSTRACT

The Trp111 to Cys mutant of sticholysin I, an actinoporin from Stichodactyla helianthus sea anemone, forms a homodimer via a disulfide bridge. The purified dimer is 193 times less hemolytic than the monomer. Ultracentrifugation, dynamic light scattering and size-exclusion chromatography demonstrate that monomers and dimers are the only independent oligomeric states encountered. Indeed, circular dichroism and fluorescence spectroscopies showed that Trp/Tyr residues participate in homodimerization and that the dimer is less thermostable than the monomer. A homodimer three-dimensional model was constructed and indicates that Trp147/Tyr137 are at the homodimer interface. Spectroscopy results validated the 3D-model and assigned 85° to the disulfide bridge dihedral angle responsible for dimerization. The homodimer model suggests that alterations in the membrane/carbohydrate-binding sites in one of the monomers, as result of dimerization, could explain the decrease in the homodimer ability to form pores.

20.
Nat Prod Res ; 32(12): 1383-1389, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28659061

ABSTRACT

In efforts to find new antimicrobial peptides (AMPs), we studied the skin secretion of the endemic Colombian frog Dendropsophus columbianus belonging to a genus that has not been investigated previously. From HPLC-fractionated secretion, we identified one peptide with slightly antibacterial activity. Its peptide sequence showed no sequence similarity to current annotated peptides. We named this novel peptide dendropsophin 1 (Dc1). Afterward, two analogues were designed (Dc1.1 and Dc1.2) to improve the cationic and amphipathic features. Then, their antiproliferative and cytotoxic properties were evaluated against several pathogens including bacteria, fungi, protozoa and also mammalian cells. Dc1 and its two analogues exhibited moderate antibacterial activities and no hemolytic and cytotoxic effects on mammalian cells. Analogue Dc1.2 showed slightly improved antibacterial properties. Their secondary structures were characterised using CD spectroscopy and Dc1.2 displayed a higher α-helix content and thermal stability compared to Dc1 and Dc1.1 in hydrophobic experimental conditions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Anura , Skin/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Colombia , Drug Evaluation, Preclinical/methods , Hemolysis/drug effects , Hemolytic Agents/chemistry , Hemolytic Agents/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Male , Microbial Sensitivity Tests , Protein Stability , Protein Structure, Secondary , Rats , Sequence Homology, Amino Acid , Trypanosoma/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...