Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(6): 3310-3317, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30688324

ABSTRACT

The variety of H bond (HB) interactions is a source of inspiration for bottom-up molecular engineering through self-aggregation. Non-conventional intermolecular HBs between N,N'-disubstituted urea and thiourea are studied in detail by vibrational spectroscopies and ab initio calculations. Raman and IR mode assignments are given. We show that it is possible to study selectively the different intermolecular bifurcated intra- and inter-dimer HBs with the two types of HB acceptors. Through the ab initio calculation, the thioamide I mode, a specific marker of N-HS[double bond, length as m-dash]C HB interactions, is unambiguously identified.

2.
Nanotechnology ; 26(40): 405601, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26374133

ABSTRACT

This manuscript reports the synthesis and characterization of the first organic-inorganic hybrid material exhibiting efficient multimodal spectral converting properties. The nanocomposite, made of Er(3+), Yb(3+) codoped zirconia nanoparticles (NPs) entrapped in a di-ureasil d-U(600) hybrid matrix, is prepared by an easy two-step sol-gel synthesis leading to homogeneous and transparent materials that can be very easily processed as monolith or film. Extensive structural characterization reveals that zirconia nanocrystals of 10-20 nm in size are efficiently dispersed into the hybrid matrix and that the local structure of the di-ureasil is not affected by the presence of the NPs. A significant enhancement in the refractive index of the di-ureasil matrix with the incorporation of the ZrO2 nanocrystals is observed. The optical study demonstrates that luminescent properties of both constituents are perfectly preserved in the final hybrid. Thus, the material displays a white-light photoluminescence from the di-ureasil component upon excitation at UV/visible radiation and also intense green and red emissions from the Er(3+)- and Yb(3+)-doped NPs after NIR excitation. The dynamics of the optical processes were also studied as a function of the lanthanide content and the thickness of the films. Our results indicate that these luminescent hybrids represent a low-cost, environmentally friendly, size-controlled, easily processed and chemically stable alternative material to be used in light harvesting devices such as luminescent solar concentrators, optical fibres and sensors. Furthermore, this synthetic approach can be extended to a wide variety of luminescent NPs entrapped in hybrid matrices, thus leading to multifunctional and versatile materials for efficient tuneable nonlinear optical nanodevices.

3.
ACS Appl Mater Interfaces ; 7(16): 8770-8, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25835303

ABSTRACT

The sol-gel preparation of a bridged silsesquioxane containing europium(III) salts and 2-thenoyltrifluoroacetone has been achieved from a new ethane tetracarboxamide-based organosilane. Free-standing films with thicknesses up to 440 µm and maximum absolute quantum yield (q) of 0.34 ± 0.03 (excitation at 320 nm) were prepared by the drop cast method, while thin films (∼200-400 nm) spin-coated on glass substrates led to highly luminescent coatings with q = 0.60 ± 0.02 (excitation at 345 nm). The thin films were tested as planar luminescent solar concentrators and the optimized device displays an optical conversion efficiency of 12.3% in the absorbing spectral region of the active layer (300-380 nm).

4.
Nat Commun ; 5: 5702, 2014 Dec 08.
Article in English | MEDLINE | ID: mdl-25483290

ABSTRACT

White light-emitting diodes (WLEDs) are candidates to revolutionize the lighting industry towards energy efficient and environmental friendly lighting and displays. The current challenges in WLEDs encompass high luminous efficiency, chromatic stability, high colour-rending index and price competitiveness. Recently, the development of efficient and low-cost downconverting photoluminescent phosphors for ultraviolet/blue to white light conversion was highly investigated. Here we report a simple route to design high-efficient WLEDs by combining a commercial ultraviolet LED chip (InGaAsN, 390 nm) and boehmite (γ-AlOOH) hybrid nanoplates. Unusually high quantum yields (ηyield=38-58%) result from a synergic energy transfer between the boehmite-related states and the triplet states of the benzoate ligands bound to the surface of the nanoplates. The nanoplates with ηyield=38% are able to emit white light with Commission International de l'Eclairage coordinates, colour-rendering index and correlated colour temperature values of (0.32, 0.33), 85.5 and 6,111 K, respectively; overwhelming state-of-the-art single-phase ultraviolet-pumped WLEDs phosphors.

5.
Langmuir ; 28(21): 8190-6, 2012 May 29.
Article in English | MEDLINE | ID: mdl-22554306

ABSTRACT

Stable, cost-effective, brightly luminescent, and metal-free organosilica nanoparticles (NPs) were prepared using the Stöber method without any thermal treatment above 318 K. The white-light photoluminescence results from a convolution of the emission originated in the NH(2) groups of the organosilane and oxygen defects in the silica network. The time-resolved emission spectra are red-shifted, relative to those acquired in the steady-state regime, pointing out that the NPs emission is governed by donor-acceptor (D-A) recombination mechanisms. Moreover, the increase of the corresponding lifetime values with the monitored wavelength further supports that the emission is governed by a recombination mechanism typical of a D-A pair attributed to an exceptionally broad inhomogeneous distribution of the emitting centers peculiar to silica-based NPs. These NPs exhibit the highest emission quantum yield value (0.15 ± 0.02) reported so far for organosilica biolabels without activator metals. Moreover, the emission spectra and the quantum yield values are quite stable over time showing no significant aging effects after exposure to the ambient environment for more than 1 year, stressing the potential of these NPs as metal-free biolabels.


Subject(s)
Luminescence , Nanoparticles/chemistry , Organosilicon Compounds/chemistry , Organosilicon Compounds/chemical synthesis , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...