Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500106

ABSTRACT

This paper investigates an innovative building material based on rapeseed concrete. This material is a non-load-bearing insulating concrete, which is intended for use in the construction of wood-frame walls thanks to its thermophysical properties. It is composed of particles of rapeseed straw, lime, and cement. First, this work proposes to characterize rapeseed straw aggregates according to the place of cultivation, the year of harvest, and the size of the straw strands. For this purpose, straws of three different origins and different years of harvest were chosen. Aggregate sizes of 10 mm and 20 mm in length were selected. In a second step, this study focuses on the effect of the type of rapeseed straw aggregates on the mechanical resistance and thermal conductivity of bio-based concrete. The results obtained showed that the influence of the different parameters on the compressive strength was stronger than that on the thermal conductivity. On the one hand, rapeseed concrete made with 10 mm straw exhibited a lower thermal conductivity, averaging at 0.073 W.m-1.K-1. On the other hand, concrete manufactured with the 20 mm size aggregates demonstrated a higher mechanical strength, which remained relatively low and closer to 0.22 MPa. Finally, 20 mm-long aggregates offered the best compromise between mechanical and thermal resistance.

2.
Materials (Basel) ; 12(6)2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30901877

ABSTRACT

Clay-based materials are the most traditional components of buildings. To improve their performance in a sustainable way, agents can be mixed to fired clay acting as a pore-forming factor. However, firing temperatures highly influence their microstructure which is closely linked to a material's final performance as a ceramic block. To highlight the influence of the firing temperature on microstructure, and more specifically on the pore size distribution of clay-based materials, three innovative porous materials were manufactured. These materials were produced by mixing clay and pore-forming agents. They were characterized by optical and scanning electronic microscopy, x-ray diffraction, mercury intrusion and nitrogen adsorption. These techniques allow the phase identification of materials, show sample microstructure and quantify the pore size distribution at different scales. Furthermore, geometric parameters of sample microstructure such as grain diameter and roundness are estimated by using computer software. To conclude, results provide an enlightenment about the influence of material microstructure on the pore size distribution at two firing temperatures. These results can be useful to allow the tune of porous characteristics and, therefore, contribute to the production of more sustainable construction materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...