Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37623625

ABSTRACT

BACKGROUND: The treatment of paracoccidioidomycosis (PCM) is a challenge, and the discovery of new antifungal compounds is crucial. The phenacylideneoxindoles exhibited promising antifungal activity against Paracoccidioides spp., but their mode of action remains unknown. METHODS: Through proteomic analysis, we investigated the effects of (E)-3-(2-oxo-2-phenylethylidene)indolin-2-one on P. brasiliensis. In addition, we investigated the metabolic alterations of P. brasiliensis in response to the compound. Furthermore, the effects of the compound on the membrane, ethanol production, and reactive oxygen species (ROS) production were verified. RESULTS: We identified differentially regulated proteins that revealed significant metabolic reorganization, including an increase in ethanol production, suggesting the activation of alcoholic fermentation and alterations in the rigidity of fungal cell membrane with an increase of the ergosterol content and formation of ROS. CONCLUSIONS: These findings enhance our understanding of the mode of action and response of P. brasiliensis to the investigated promising antifungal compound, emphasizing its potential as a candidate for the treatment of PCM.

2.
Microorganisms ; 11(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36838213

ABSTRACT

Paracoccidioides spp. are endemic fungi from Latin America that cause Paracoccidioidomycosis, a systemic disease. These fungi present systems for high-affinity metal uptake, storage, and mobilization, which counteract host nutritional immunity and mitigate the toxic effects of metals. Regarding Cu mobilization, the metallochaperone Atx1 is regulated according to Cu bioavailability in Paracoccidioides spp., contributing to metal homeostasis. However, additional information in the literature on PbAtx1 is scarce. Therefore, in the present work, we aimed to study the PbAtx1 protein-protein interaction networks. Heterologous expressed PbAtx1 was used in a pull-down assay with Paracoccidioides brasiliensis cytoplasmic extract. Nineteen proteins that interacted with PbAtx1 were identified by HPLC-MSE. Among them, a relevant finding was a Cytochrome b5 (PbCyb5), regulated by Fe bioavailability in Aspergillus fumigatus and highly secreted by P. brasiliensis in Fe deprivation. We validated the interaction between PbAtx1-PbCyb5 through molecular modeling and far-Western analyses. It is known that there is a relationship between Fe homeostasis and Cu homeostasis in organisms. In this sense, would PbAtx1-PbCyb5 interaction be a new metal-sensor system? Would it be supported by the presence/absence of metals? We intend to answer those questions in future works to contribute to the understanding of the strategies employed by Paracoccidioides spp. to overcome host defenses.

3.
J Fungi (Basel) ; 9(1)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675929

ABSTRACT

BACKGROUND: Paracoccidioidomycosis is a systemic mycosis caused by the inhalation of conidia of the genus Paracoccidioides. During the infectious process, fungal cells use several carbon sources, leading to the production of propionyl-CoA. The latter is metabolized by the methylcitrate synthase, a key enzyme of the methylcitrate cycle. We identified an inhibitor compound (ZINC08964784) that showed antifungal activity against P. brasiliensis. METHODS: This work aimed to understand the fungal metabolic response of P. brasiliensis cells exposed to ZINC08964784 through a proteomics approach. We used a glucose-free medium supplemented with propionate in order to simulate the environment found by the pathogen during the infection. We performed pyruvate dosage, proteolytic assay, dosage of intracellular lipids and quantification of reactive oxygen species in order to validate the proteomic results. RESULTS: The proteomic analysis indicated that the fungal cells undergo a metabolic shift due to the inhibition of the methylcitrate cycle and the generation of reactive species. Proteolytic enzymes were induced, driving amino acids into degradation for energy production. In addition, glycolysis and the citric acid cycle were down-regulated while ß-oxidation was up-regulated. The accumulation of pyruvate and propionyl-CoA led the cells to a state of oxidative stress in the presence of ZINC08964784. CONCLUSIONS: The inhibition of methylcitrate synthase caused by the compound promoted a metabolic shift in P. brasiliensis damaging energy production and generating oxidative stress. Hence, the compound is a promising alternative for developing new strategies of therapies against paracoccidioidomycosis.

4.
J Proteomics ; 266: 104683, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35835316

ABSTRACT

Paracoccidioides spp. are the etiological agent of paracoccidioidomycosis, a disease that causes skin lesions and affect the lungs and other organs. The current management of the disease is long and has several side effects that often lead the patient to give up the treatment, sequelae and even death. The search for new forms of treatment that minimize these drawbacks is very important. Thus, natural compounds are targets of great interest. Curcumin is one of the main components of the tubers of Curcuma longa, presenting medicinal effects well described in the literature, including the antifungal effect on Paracocidioides brasiliensis. Nevertheless, the mechanisms related to the antifungal effect of such compound are still unknown, so the objective of the present research is to understand what changes occur in the metabolism of P. brasiliensis after exposure to curcumin and to identify the main targets of the compound. Proteomic analysis as based on nanoUPLC-MS analysis and the functional classification of the identified proteins. The main metabolic processes that were being regulated were biologically validated through assays such as fluorescence microscopy, EPR and phagocytosis. Proteomic analysis revealed that curcumin regulates several metabolic processes of the fungus, including important pathways for energy production, such as the glycolytic pathway, beta oxidation and the glyoxylate cycle. Protein synthesis was down-regulated in fungi exposed to curcumin. The electron transport chain and the tricarboxylic acid cycle were also down-regulated, indicating that both the mitochondrial membrane and the mitochondrial activity were compromised. Plasma membrane and cell wall structure were altered following exposure to the compound. The fungus' ability to survive the phagocytosis process by alveolar macrophages was reduced. Thus, curcumin interferes with several metabolic pathways in the fungus that causes paracoccidioidomycosis. BIOLOGICAL SIGNIFICANCE: The challenges presented by the current treatment of paracoccidioidomycosis often contributing to patients' withdrawal from treatment, leading to sequelae or even death. Thus, the search for new treatment options against this disease is growing. The discovery that curcumin is active against Paracoccidioides was previously reported by our study group. Here, we clarify how the compound acts on the fungus causing its growth inhibition and decreased viability. Understanding the mechanisms of action of curcumin on P. brasiliensis elucidates how we can seek new alternatives and which metabolic pathways and molecular targets we should focus on in this incessant search to bring the patient a treatment with fewer adverse effects.


Subject(s)
Curcumin , Paracoccidioides , Paracoccidioidomycosis , Antifungal Agents/pharmacology , Curcumin/pharmacology , Humans , Paracoccidioides/metabolism , Paracoccidioidomycosis/drug therapy , Paracoccidioidomycosis/metabolism , Paracoccidioidomycosis/microbiology , Proteomics
5.
J Biomol Struct Dyn ; 40(19): 9361-9373, 2022.
Article in English | MEDLINE | ID: mdl-34060981

ABSTRACT

Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in Latin America, caused by fungi of the genus Paracoccidioides. The treatment of PCM is complex, requiring a long treatment period, which often results in serious side effects. The aim of this study was to screen for inhibitors of a specific target of the fungus that is absent in humans. Methylcitrate synthase (MCS) is a unique enzyme of microorganisms and is responsible for the synthesis of methylcitrate at the beginning of the propionate degradation pathway. This pathway is essential for several microorganisms, since the accumulation of propionyl-CoA can impair virulence and prevent the development of the pathogen. We performed the modeling and molecular dynamics of the structure of Paracoccidioides lutzii MCS (PlMCS) and performed a virtual screening on 89,415 compounds against the active site of the enzyme. The compounds were selected according to the affinity and efficiency criteria of in vitro tests. Six compounds were able to inhibit the enzymatic activity of recombinant PlMCS but only the compound ZINC08964784 showed fungistatic and fungicidal activity against Paracoccidioides spp. cells. The analysis of the interaction profile of this compound with PlMCS showed its effectiveness in terms of specificity and stability when compared to the substrate (propionyl-CoA) of the enzyme. In addition, this compound did not show cytotoxicity in mammalian cells, with an excellent selectivity index. Our results suggest that the compound ZINC08964784 may become a promising alternative antifungal against Paracoccidioides spp. Communicated by Ramaswamy H. Sarma.


Subject(s)
Paracoccidioides , Paracoccidioidomycosis , Humans , Animals , Paracoccidioidomycosis/drug therapy , Paracoccidioidomycosis/microbiology , Citrate (si)-Synthase/pharmacology , Mammals
6.
J Fungi (Basel) ; 7(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33401497

ABSTRACT

Paracoccidioides spp. are thermally dimorphic fungi that cause paracoccidioidomycosis and can affect both immunocompetent and immunocompromised individuals. The infection can lead to moderate or severe illness and death. Paracoccidioides spp. undergo micronutrients deprivation within the host, including iron. To overcome such cellular stress, this genus of fungi responds in multiple ways, such as the utilization of hemoglobin. A glycosylphosphatidylinositol (GPI)-anchored fungal receptor, Rbt5, has the primary role of acquiring the essential nutrient iron from hemoglobin. Conversely, it is not clear if additional proteins participate in the process of using hemoglobin by the fungus. Therefore, in order to investigate changes in the proteomic level of P. lutzii cell wall, we deprived the fungus of iron and then treated those cells with hemoglobin. Deprived iron cells were used as control. Next, we performed cell wall fractionation and the obtained proteins were submitted to nanoUPLC-MSE. Protein expression levels of the cell wall F1 fraction of cells exposed to hemoglobin were compared with the protein expression of the cell wall F1 fraction of iron-deprived cells. Our results showed that P. lutzii exposure to hemoglobin increased the level of adhesins expression by the fungus, according to the proteomic data. We confirmed that the exposure of the fungus to hemoglobin increased its ability to adhere to macrophages by flow cytometry. In addition, we found that HSP30 of P. lutzii is a novel hemoglobin-binding protein and a possible heme oxygenase. In order to investigate the importance of HSP30 in the Paracoccidioides genus, we developed a Paracoccidioides brasiliensis knockdown strain of HSP30 via Agrobacterium tumefaciens-mediated transformation and demonstrated that silencing this gene decreases the ability of P. brasiliensis to use hemoglobin as a nutrient source. Additional studies are needed to establish HSP30 as a virulence factor, which can support the development of new therapeutic and/or diagnostic approaches.

7.
J Fungi (Basel) ; 6(4)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33228010

ABSTRACT

Paracoccidioidomycosis is a neglected disease that causes economic and social impacts, mainly affecting people of certain social segments, such as rural workers. The limitations of antifungals, such as toxicity, drug interactions, restricted routes of administration, and the reduced bioavailability in target tissues, have become evident in clinical settings. These factors, added to the fact that Paracoccidioidomycosis (PCM) therapy is a long process, lasting from months to years, emphasize the need for the research and development of new molecules. Researchers have concentrated efforts on the identification of new compounds using numerous tools and targeting important proteins from Paracoccidioides, with the emphasis on enzymatic pathways absent in humans. This review aims to discuss the aspects related to the identification of compounds, methodologies, and perspectives when proposing new antifungal agents against PCM.

8.
J Fungi (Basel) ; 6(4)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238437

ABSTRACT

BACKGROUND: Systemic mycosis is a cause of death of immunocompromised subjects. The treatment directed to evade fungal pathogens shows severe limitations, such as time of drug exposure and side effects. The paracoccidioidomycosis (PCM) treatment depends on the severity of the infection and may last from months to years. METHODS: To analyze the main interactions of Paracoccidioides lutzii isocitrate lyase (ICL) regarding the energetic metabolism through affinity chromatography, we performed blue native PAGE and co-immunoprecipitation to identify ICL interactions. We also performed in silico analysis by homology, docking, hot-spot prediction and contact preference analysis to identify the conformation of ICL complexes. RESULTS: ICL interacted with 18 proteins in mycelium, 19 in mycelium-to-yeast transition, and 70 in yeast cells. Thirty complexes were predicted through docking and contact preference analysis. ICL has seven main regions of interaction with protein partners. CONCLUSIONS: ICL seems to interfere with energetic metabolism of P. lutzii, regulating aerobic and anaerobic metabolism as it interacts with proteins from glycolysis, gluconeogenesis, TCA and methylcitrate cycles, mainly through seven hot-spot residues.

SELECTION OF CITATIONS
SEARCH DETAIL
...