Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Sci Adv ; 6(14): eaaz0421, 2020 04.
Article in English | MEDLINE | ID: mdl-32284978

ABSTRACT

Blue natural pigments are rare, especially among plants. However, flowering species that evolved to attract Hymenoptera pollinators are colored by blue anthocyanin-metal complexes. Plants lacking anthocyanins are pigmented by betalains but are unable to produce blue hues. By extending the π-system of betalains, we designed a photostable and metal-free blue dye named BeetBlue that did not show toxicity to human hepatic and retinal pigment epithelial cells and does not affect zebrafish embryonal development. This chiral dye can be conveniently synthesized from betalamic acid obtained from hydrolyzed red beetroot juice or by enzymatic oxidation of l-dopa. BeetBlue is blue in the solid form and in solution of acidified polar molecular solvents, including water. Its capacity to dye natural matrices makes BeetBlue the prototype of a new class of low-cost bioinspired chromophores suitable for a myriad of applications requiring a blue hue.


Subject(s)
Coloring Agents/chemistry , Coloring Agents/isolation & purification , Pigments, Biological/chemistry , Plants/chemistry , Animals , Chemical Phenomena , Color , Coloring Agents/analysis , Coloring Agents/toxicity , Density Functional Theory , Metals , Molecular Structure , Pigmentation , Spectrum Analysis , Zebrafish
2.
Sci. Adv. ; 6(14): eaaz0421, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17609

ABSTRACT

Blue natural pigments are rare, especially among plants. However, flowering species that evolved to attract Hymenoptera pollinators are colored by blue anthocyanin-metal complexes. Plants lacking anthocyanins are pigmented by betalains but are unable to produce blue hues. By extending the p-system of betalains, we designed a photostable and metal-free blue dye named BeetBlue that did not show toxicity to human hepatic and retinal pigment epithelial cells and does not affect zebrafish embryonal development. This chiral dye can be conveniently synthesized from betalamic acid obtained from hydrolyzed red beetroot juice or by enzymatic oxidation of L-dopa. BeetBlue is blue in the solid form and in solution of acidified polar molecular solvents, including water. Its capacity to dye natural matrices makes BeetBlue the prototype of a new class of low-cost bioinspired chromophores suitable for a myriad of applications requiring a blue hue.

3.
Sci Adv, v. 6, n. 14, eaaz0421, abr. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3010

ABSTRACT

Blue natural pigments are rare, especially among plants. However, flowering species that evolved to attract Hymenoptera pollinators are colored by blue anthocyanin-metal complexes. Plants lacking anthocyanins are pigmented by betalains but are unable to produce blue hues. By extending the p-system of betalains, we designed a photostable and metal-free blue dye named BeetBlue that did not show toxicity to human hepatic and retinal pigment epithelial cells and does not affect zebrafish embryonal development. This chiral dye can be conveniently synthesized from betalamic acid obtained from hydrolyzed red beetroot juice or by enzymatic oxidation of L-dopa. BeetBlue is blue in the solid form and in solution of acidified polar molecular solvents, including water. Its capacity to dye natural matrices makes BeetBlue the prototype of a new class of low-cost bioinspired chromophores suitable for a myriad of applications requiring a blue hue.

SELECTION OF CITATIONS
SEARCH DETAIL
...