Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 128(23): 232501, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35749172

ABSTRACT

The Baksan Experiment on Sterile Transitions (BEST) was designed to investigate the deficit of electron neutrinos ν_{e} observed in previous gallium-based radiochemical measurements with high-intensity neutrino sources, commonly referred to as the "gallium anomaly," which could be interpreted as evidence for oscillations between ν_{e} and sterile neutrino (ν_{s}) states. A 3.414-MCi ^{51}Cr ν_{e} source was placed at the center of two nested Ga volumes and measurements were made of the production of ^{71}Ge through the charged current reaction, ^{71}Ga(ν_{e},e^{-})^{71}Ge, at two average distances. The measured production rates for the inner and the outer targets, respectively, are [54.9_{-2.4}^{+2.5}(stat)±1.4(syst)] and [55.6_{-2.6}^{+2.7}(stat)±1.4(syst)] atoms of ^{71}Ge/d. The ratio (R) of the measured rate of ^{71}Ge production at each distance to the expected rate from the known cross section and experimental efficiencies are R_{in}=0.79±0.05 and R_{out}=0.77±0.05. The ratio of the outer to the inner result is 0.97±0.07, which is consistent with unity within uncertainty. The rates at each distance were found to be similar, but 20%-24% lower than expected, thus reaffirming the anomaly. These results are consistent with ν_{e}→ν_{s} oscillations with a relatively large Δm^{2} (>0.5 eV^{2}) and mixing sin^{2}2θ (≈0.4).

2.
Phys Rev Lett ; 118(6): 061801, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28234515

ABSTRACT

MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

3.
Phys Rev Lett ; 116(7): 072501, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26943530

ABSTRACT

The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyväskylä. We report Q values for the ^{96}Zr single and double ß decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single ß decay to ^{96}Mo, which are Q_{ß}(^{96}Zr)=163.96(13), Q_{ßß}(^{96}Zr)=3356.097(86), and Q_{ß}(^{96}Nb)=3192.05(16) keV. Of special importance is the ^{96}Zr single ß-decay Q value, which has never been determined directly. The single ß decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the ^{96}Zr ßß decay, and its observation can provide one of the most direct tests of the neutrinoless ßß-decay nuclear-matrix-element calculations, as these can be simultaneously performed for both decay paths with no further assumptions. The theoretical single ß-decay rate has been re-evaluated using a shell-model approach, which indicates a ^{96}Zr single ß-decay lifetime within reach of an experimental verification. The uniqueness of the decay also makes such an experiment interesting for an investigation into the origin of the quenching of the axial-vector coupling constant g_{A}.

4.
Phys Rev Lett ; 113(8): 082502, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25192092

ABSTRACT

In this Letter, we introduce the concept of in-trap nuclear decay spectroscopy of highly charged radioactive ions and describe its successful application as a novel spectroscopic tool. This is demonstrated by a measurement of the decay properties of radioactive mass A=124 ions (here, ^{124}In and ^{124}Cs) in the electron-beam ion trap of the TITAN facility at TRIUMF. By subjecting the trapped ions to an intense electron beam, the ions are charge bred to high charge states (i.e., equivalent to the removal of N-shell electrons), and an increase of storage times to the level of minutes without significant ion losses is achieved. The present technique opens the venue for precision spectroscopy of low branching ratios and is being developed in the context of measuring electron-capture branching ratios needed for determining the nuclear ground-state properties of the intermediate odd-odd nuclei in double-beta (ßß) decay.

5.
Rev Sci Instrum ; 83(2): 02A912, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380253

ABSTRACT

TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) constitutes the only high precision mass measurement setup coupled to a rare isotope facility capable of increasing the charge state of short-lived nuclides prior to the actual mass determination in a Penning trap. Recent developments around TITAN's charge breeder, the electron beam ion trap, form the basis for several successful experiments on radioactive isotopes with half-lives as low as 65 ms and in charge states as high as 22+.

6.
Phys Rev Lett ; 103(1): 012503, 2009 Jul 03.
Article in English | MEDLINE | ID: mdl-19659141

ABSTRACT

The double-differential cross sections for the 48Ca(p,n) and 48Ti(n,p) reactions were measured at 300 MeV. A multipole decomposition technique was applied to the spectra to extract the Gamow-Teller (GT) components. The integrated GT strengths up to an excitation energy of 30 MeV in 48Sc are 15.3+/-2.2 and 2.8+/-0.3 in the (p,n) and (n,p) spectra, respectively. In the (n,p) spectra additional GT strengths were found above 8 MeV where shell models within the fp shell-model space predict almost no GT strengths, suggesting that the present shell-model description of the nuclear matrix element of the two-neutrino double-beta decay is incomplete.

7.
Phys Rev Lett ; 97(6): 062502, 2006 Aug 11.
Article in English | MEDLINE | ID: mdl-17026166

ABSTRACT

A new experimental approach to the famous problem of the anomalously slow Gamow-Teller (GT) transitions in the beta decay of the A=14 multiplet is presented. The GT strength distributions to excited states in 14C and 14O were studied in high-resolution (d,2He) and (3He,t) charge-exchange reactions on 14N. No-core shell-model calculations capable of reproducing the suppression of the beta decays predict a selective excitation of Jpi=2+ states. The experimental confirmation represents a validation of the assumptions about the underlying structure of the 14N ground state wave function. However, the fragmentation of the GT strength over three 2+ final states remains a fundamental issue not explained by the present no-core shell model using a 6homega model space, suggesting possibly the need to include cluster structure in these light nuclei in a consistent way.

8.
Phys Rev Lett ; 96(25): 252501, 2006 Jun 30.
Article in English | MEDLINE | ID: mdl-16907298

ABSTRACT

The strength of the Ec.m. = 184 keV resonance in the 26gAl(p, gamma)27 reaction has been measured in inverse kinematics using the DRAGON recoil separator at TRIUMF's ISAC facility. We measure a value of omega gamma = 35 +/- 7 microeV and a resonance energy of Ec.m. = 184 +/- 1 keV, consistent with p-wave proton capture into the 7652(3) keV state in 27Si, and discuss the implications of these values for 26GAl nucleosynthesis in typical oxygen-neon white-dwarf novae.

9.
Z Naturforsch C J Biosci ; 52(5-6): 364-72, 1997.
Article in English | MEDLINE | ID: mdl-9232893

ABSTRACT

The yield of single-strand breaks (ssb) and double-strand breaks (dsb) produced by alpha-particles at the end of their track in DNA-films was determined experimentally. Helium nuclei were accelerated to 600 keV in the 400 kV ion accelerator and scattered at a carbon target. The elastically scattered alpha-particles with energies of 344 keV and 485 keV were used to irradiate supercircular plasmid DNA in vacuo. For the dosimetry of the alpha-particles a surface barrier detector was used and the energy distribution of the alpha-particles determined. The energy loss of the particles in the DNA-layer was calculated. DNA samples were separated into the three conformational isomers using agarose gel electrophoresis. After fluorochromation the number of ssb and dsb per plasmid DNA molecule was established from the band intensities assuming the validity of Poisson statistics. Linear dose effect correlations were found for ssb and dsb per plasmid molecule. In the case of 344 keV-alpha-particles the yield of dsb was (8.6 +/- 0.9) x 10(-11) breaks/Gy x dalton. The ratio of ssb/dsb was 0.5 +/- 0.2. This is at least a factor of six larger than the ratio found in experiments with higher energy alpha-particles and from model calculations. Similar experiments with protons yielded a relative biological effectiveness (rbe) value of 2.8 for the induction of double-strand breaks by track end alpha-particles.


Subject(s)
Alpha Particles , DNA Damage , Plasmids/radiation effects , DNA, Single-Stranded/radiation effects , Dose-Response Relationship, Radiation , Escherichia coli/genetics , Nucleic Acid Conformation , Particle Accelerators , Plasmids/chemistry , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...