Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 605-606: 666-676, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28675876

ABSTRACT

In a hydroelectric reservoir, sediments are subject to remobilization events, water-level fluctuations and physicochemical changes. Depending on their associated metallic content, surficial oxic to suboxic sediments could constitute a major source of metals. To identify the key parameters that control metallic elements in terms of their mobility and sensitivity to reservoir management, sediments were subject to resuspension and drying/wetting cycle experiments over a wide range of pH values, solid/liquid ratios (S/L) and redox (Eh) conditions. During these tests, special attention was also paid to the influence of pretreatments on samples, i.e., drying, aeration and the leachate composition (ultrapure water vs. natural water); on the preservation of the sediment characteristics; and especially on metallic element release. The results of this study show that the pH, S/L ratio and Eh parameters are key variables in metal solubilization; the pH influences metal mobility primarily through sorption-desorption phenomena as well as the dissolution of metallic-bearing phases, the S/L ratio modifies the sorption-desorption equilibria, and the Eh primarily affects the reducible sensitive phases and associated metallic elements through dissolution-precipitation processes. Under environmental conditions, evolution of these parameters can lead to a >20% solubilization of the most mobile elements, i.e., As and Cd. These results are influenced by the sample pretreatment and experimental conditions. In fact, even if the solubilization patterns show no significant differences between dry and wet sediment depending on the physicochemical conditions, the magnitude of their release is significantly affected. Drying pretreatment induces changes in metal speciation, notably altering the distribution of the most weakly bound elements; there is almost half the amount of metallic elements associated with the exchangeable fraction in dry compared to wet sediments. The solubilization percentages were higher in the ultrapure phase than in reservoir water primarily due to the low pH, which influenced the sorption equilibria.

2.
Sci Total Environ ; 562: 201-215, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27100001

ABSTRACT

In dam contexts, sluicing operations can be performed to reestablish sediments continuity, as proposed by the EU Water Framework Directive, as well as to preserve the reservoirs' water storage capacity. Such management permits the rapid release of high quantities of reservoir sediments through the opening of dam bottom valves. This work aims to study the impact of such operation on the evolution of environmental physicochemical conditions notably changes in dissolved metallic elements concentrations (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) through field and laboratory investigations. Results were interpreted in terms of concentrations and fluxes, and compared with data collected on an annual basis regarding both suspended matter and metallic elements. The release of high quantities of sediments (4,500tons dry weight in 24h), with concentrations representing up to 300 times the inter-annual mean suspended sediments discharge, significantly modified water parameters, notably solid/liquid (S/L) ratio, pH and redox conditions. Despite the fact that they are mainly trapped in stable phases, a clear increase of the solubilized metals content was measured, representing up to 60 times the maximum values of current exploitation. This solubilization is related to desorption phenomena from sediments through changes in chemical equilibriums as highlighted by laboratory characterizations and experiments. These chemical modifications are mainly attributed to S/L ratio variations. Indeed, the low S/L ratios (≤1.3g·L(-1)) measured in situ are typically the ones for which metals solubilization is the highest, as shown by laboratory experiments. Additional thermodynamic modeling highlighted that the decrease in pH measured during the operation favors the release of the free forms of metallic elements (Al and Cu), and decreases the OM complexation influence. These changes, either in term of physical conditions or speciation, increasing metals long term bioavailability notably during redeposition phase, may have adverse effects on aquatic biota.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Metals/analysis , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 547: 282-294, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26789366

ABSTRACT

Sediments play an important role on the quality of aquatic ecosystems, notably in the reservoir areas where they can either be a sink or a source of contaminants, depending on the management and hydrological conditions. The physicochemical properties of 25 surface sediments samples of a reservoir catchment (Vaussaire, Cantal, France) were studied. Results show a strong influence of dam presence, notably on the grain size and organic matter (OM) contents. The concentrations of trace metals and metalloids (As, Cd, Cr, Cu, Ni, Pb and Zn) were also measured and compared with worldwide reservoir concentrations and international sediment quality guideline levels in order to assess the intensity of the metallic contamination. Cr and Ni are the trace elements presenting the significantly highest values at the catchment scale. Enrichment Factors (EF), calculated using both local and national backgrounds, show that metals have mainly a natural origin, explaining especially the Cr and Ni values, linked with the composition of parental rocks. Unexpectedly, all the observed metal concentrations are lower in the reservoir than upstream and downstream, which might be related to the high fresh OM inputs in the reservoir, diluting the global metallic contamination. Multivariate statistical analyses, carried out in order to identify the relationship between the studied metals and sediment characteristics, tend to support this hypothesis, confirming the unusually low influence of such poorly-degraded OM on trace element accumulation in the reservoir.

4.
J Biol Eng ; 8: 19, 2014.
Article in English | MEDLINE | ID: mdl-25104972

ABSTRACT

BACKGROUND: Metal contamination is widespread and results from natural geogenic and constantly increasing anthropogenic sources (mainly mining and extraction activities, electroplating, battery and steel manufacturing or metal finishing). Consequently, there is a growing need for methods to detoxify polluted ecosystems. Industrial wastewater, surface water and ground water need to be decontaminated to alleviate the contamination of soils and sediments and, ultimately, the human food chain. In nuclear power plants, radioactive metals are produced; these metals need to be removed from effluents before they are released into the environment, not only for pollution prevention but also for waste minimization. Many physicochemical methods have been developed for metal removal from aqueous solutions, including chemical coagulation, adsorption, extraction, ion exchange and membrane separation; however, these methods are generally not metal selective. Bacteria, because they contain metal transporters, provide a potentially competitive alternative to the current use of expensive and high-volume ion-exchange resins. RESULTS: The feasibility of using bacterial biofilters as efficient tools for nickel and cobalt ions specific remediation was investigated. Among the factors susceptible to genetic modification in Escherichia coli, specific efflux and sequestration systems were engineered to improve its metal sequestration abilities. Genomic suppression of the RcnA nickel (Ni) and cobalt (Co) efflux system was combined with the plasmid-controlled expression of a genetically improved version of a specific metallic transporter, NiCoT, which originates from Novosphingobium aromaticivorans. The resulting strain exhibited enhanced nickel (II) and cobalt (II) uptake, with a maximum metal ion accumulation of 6 mg/g bacterial dry weight during 10 min of treatment. A synthetic adherence operon was successfully introduced into the plasmid carrying the improved NiCoT transporter, conferring the ability to form thick biofilm structures, especially when exposed to nickel and cobalt metallic compounds. CONCLUSIONS: This study demonstrates the efficient use of genetic engineering to increase metal sequestration and biofilm formation by E. coli. This method allows Co and Ni contaminants to be sequestered while spatially confining the bacteria to an abiotic support. Biofiltration of nickel (II) and cobalt (II) by immobilized cells is therefore a promising option for treating these contaminants at an industrial scale.

5.
Res Microbiol ; 162(9): 908-14, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21810469

ABSTRACT

Lagoons and coastal waters are contaminated by a large number of chemicals discharged directly or carried by rivers and runoff water that drain catchment areas in which agricultural activities take place. The inflow of these exogenous compounds constitutes a genuine risk for the health of ecosystems. It is therefore important to detect their presence in the natural environment before they cause irreversible damage. Here we present a study aimed at developing a tool for rapid detection of pesticides and other chemicals in environments liable to be contaminated, in order to propose an early warning system for decision-makers. The study carried out focuses on two herbicides commonly encountered in the environment, i.e. diuron and glyphosate, as well as several of their photodegradation products (DCPU, DCPMU, AMPA). The results presented contribute toward developing a biosensor based on measuring the metabolic activities of immobilized unicellular marine algae. The sensor's operation is based on measuring the esterase localized on the external membrane of the algae cells and chlorophyll fluorescence. The tests carried out show that the signal emitted by the sensor is disturbed by the presence of the two herbicides studied. The system proposed appears useful as a tool for controlling environments requiring monitoring.


Subject(s)
Biosensing Techniques/methods , Cells, Immobilized/enzymology , Diuron/analysis , Environmental Monitoring/methods , Esterases/metabolism , Glycine/analogs & derivatives , Rivers/chemistry , Seawater/chemistry , Biosensing Techniques/instrumentation , Cells, Immobilized/chemistry , Chlorophyll/metabolism , Chlorophyta/chemistry , Chlorophyta/enzymology , Diatoms/chemistry , Diatoms/enzymology , Electrodes , Environmental Monitoring/instrumentation , Fluorescence , Glycine/analysis , Herbicides/analysis , Mediterranean Sea , Pesticides/analysis , Spectrometry, Fluorescence , Water Pollutants, Chemical/analysis , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...