Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 14: 1295518, 2023.
Article in English | MEDLINE | ID: mdl-38027002

ABSTRACT

Background: Modern methods for quantifying signaling bias at G protein-coupled receptors (GPCRs) rely on using a single ß-arrestin isoform. However, it is increasingly appreciated that the two ß-arrestin isoforms have unique roles, requiring the ability to assess ß-arrestin isoform preference. Thus, methods are needed to efficiently screen the recruitment of both ß-arrestin isoforms as they compete for a target GPCR in cells. Methods: We used molecular cloning to develop fusion proteins of the δ-opioid receptor (δOR), ß-arrestin 1, and ß-arrestin 2 to fragments of click beetle green and click beetle red luciferases. In this assay architecture, recruitment of either ß-arrestin 1 or 2 to the δOR generates a spectrally distinct bioluminescent signal, allowing us to co-transfect all three constructs into cells prior to agonist challenge. Results: We demonstrate that our new assay, named "ClickArr," is a live-cell assay that simultaneously reports the recruitment of both ß-arrestin isoforms as they compete for interaction with the δOR. We further find that the partial δOR agonist TAN67 has a significant efficacy bias for ß-arrestin 2 over ß-arrestin 1 when recruitment is normalized to the reference agonist leu-enkephalin. We confirm that ClickArr reports this bias when run either as a high-throughput endpoint or high-throughput kinetic assay, and cross-validate this result using the PathHunter assay, an orthogonal commercial assay for reporting ß-arrestin recruitment to the δOR. Conclusion: Our results suggest that agonist:GPCR complexes can have relative ß-arrestin isoform bias, a novel signaling bias that may potentially open up a new dimension for drug development.

2.
J Med Chem ; 66(5): 3312-3326, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36827198

ABSTRACT

Akuammine (1) and pseudoakuammigine (2) are indole alkaloids found in the seeds of the akuamma tree (Picralima nitida). Both alkaloids are weak agonists of the mu opioid receptor (µOR); however, they produce minimal effects in animal models of antinociception. To probe the interactions of 1 and 2 at the opioid receptors, we have prepared a collection of 22 semisynthetic derivatives. Evaluation of this collection at the µOR and kappa opioid receptor (κOR) revealed structural-activity relationship trends and derivatives with improved potency at the µOR. Most notably, the introduction of a phenethyl moiety to the N1 of 2 produces a 70-fold increase in potency and a 7-fold increase in selectivity for the µOR. The in vitro potency of this compound resulted in increased efficacy in the tail-flick and hot-plate assays of antinociception. The improved potency of these derivatives highlights the promise of exploring natural product scaffolds to probe the opioid receptors.


Subject(s)
Alkaloids , Receptors, Opioid, mu , Animals , Receptors, Opioid , Alkaloids/pharmacology , Receptors, Opioid, kappa/agonists , Analgesics, Opioid/pharmacology , Dose-Response Relationship, Drug
3.
Nat Methods ; 20(2): 214-217, 2023 02.
Article in English | MEDLINE | ID: mdl-36717692

ABSTRACT

Lifeact is a popular peptide-based label of actin filaments in live cells. We have designed an improved Lifeact variant, LILAC, that binds to actin in light using the LOV2 protein. Light control allows the user to modulate actin labeling, enabling image analysis that leverages modulation for an enhanced view of F-actin dynamics in cells. Furthermore, the tool reduces actin perturbations and cell sickness caused by Lifeact overexpression.


Subject(s)
Actins , Optogenetics , Actin Cytoskeleton , Peptides/metabolism
4.
Pharmacol Biochem Behav ; 216: 173377, 2022 05.
Article in English | MEDLINE | ID: mdl-35364122

ABSTRACT

The kappa opioid receptor is a known regulator of ethanol consumption, but the molecular mechanisms behind its actions have been underexplored. The scaffolding protein ß-arrestin 2 has previously been implicated in driving ethanol consumption at the related delta opioid receptor and has also been suggested to be a driver behind other negative kappa opioid receptor mediated effects. Here, we used kappa opioid agonists with different efficacies for recruiting ß-arrestin 2 and knockout animals to determine whether there is a role for ß-arrestin 2 in the modulation of voluntary ethanol consumption by the kappa opioid receptor. We find that an agonist with low ß-arrestin 2 efficacy more consistently lowers ethanol consumption than agonists with high efficacy for ß-arrestin 2. However, knockdown of ß-arrestin 2 amplifies the ethanol consumption-promoting effects of the arrestin-recruiting kappa agonists U50,488 and nalfurafine. We control for potentially confounding sedative effects at the kappa opioid receptor and find that ß-arrestin 2 is not necessary for kappa opioid receptor-mediated sedation, and that sedation does not correlate with effects on ethanol consumption. Overall, the results suggest a complex relationship between agonist profile, sex, and kappa opioid receptor modulation of ethanol consumption, with little role for kappa opioid receptor-mediated sedation.


Subject(s)
Alcohol Drinking , Receptors, Opioid, kappa , Analgesics, Opioid/pharmacology , Animals , Ethanol/pharmacology , Receptors, Opioid, kappa/agonists , beta-Arrestin 2/genetics , beta-Arrestin 2/metabolism , beta-Arrestins/metabolism
5.
Pharmacol Res ; 177: 106091, 2022 03.
Article in English | MEDLINE | ID: mdl-35101565

ABSTRACT

Kappa opioid receptor (κOR) agonists lack the abuse liability and respiratory depression effects of clinically used mu opioid receptor (µOR) analgesics and are hypothesized to be safer alternatives. However, κOR agonists have limiting adverse effects of their own, including aversion, sedation, and mood effects, that have hampered their clinical translation. Studies performed over the last 15 years have suggested that these adverse effects could result from activation of distinct intracellular signaling pathways that are dependent on ß-arrestin, whereas signaling downstream of G protein activation produces antinociception. This led to the hypothesis that agonists biased away from ß-arrestin signaling would have improved therapeutic windows over traditional unbiased agonists and allow for clinical development of analgesic G-protein-biased κOR agonists. Given a recent controversy regarding the benefits of G-protein-biased µOR agonists, it is timely to reassess the therapeutic promise of G-protein-biased κOR agonists. Here we review recent discoveries from preclinical κOR studies and critically evaluate the therapeutic windows of G-protein-biased κOR agonists in each of the adverse effects above. Overall, we find that G-protein-biased κOR agonists generally have improved therapeutic window relative to unbiased agonists, although frequently study design limits strong conclusions in this regard. However, a steady flow of newly developed biased κOR agonists paired with recently engineered behavioral and molecular tools puts the κOR field in a prime position to make major advances in our understanding of κOR function and fulfill the promise of translating a new generation of biased κOR agonists to the clinic.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Receptors, Opioid, kappa , Analgesics/therapeutic use , Analgesics, Opioid/adverse effects , Drug-Related Side Effects and Adverse Reactions/drug therapy , GTP-Binding Proteins/metabolism , Humans , Pain/drug therapy , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , beta-Arrestins/metabolism
6.
Front Pharmacol ; 12: 764885, 2021.
Article in English | MEDLINE | ID: mdl-34803709

ABSTRACT

Background and Purpose: Mitragyna speciosa extract and kratom alkaloids decrease alcohol consumption in mice at least in part through actions at the δ-opioid receptor (δOR). However, the most potent opioidergic kratom alkaloid, 7-hydroxymitragynine, exhibits rewarding properties and hyperlocomotion presumably due to preferred affinity for the mu opioid receptor (µOR). We hypothesized that opioidergic kratom alkaloids like paynantheine and speciogynine with reduced µOR potency could provide a starting point for developing opioids with an improved therapeutic window to treat alcohol use disorder. Experimental Approach: We characterized paynantheine, speciociliatine, and four novel kratom-derived analogs for their ability to bind and activate δOR, µOR, and κOR. Select opioids were assessed in behavioral assays in male C57BL/6N WT and δOR knockout mice. Key Results: Paynantheine (10 mg∙kg-1, i.p.) produced aversion in a limited conditioned place preference (CPP) paradigm but did not produce CPP with additional conditioning sessions. Paynantheine did not produce robust antinociception but did block morphine-induced antinociception and hyperlocomotion. Yet, at 10 and 30 mg∙kg-1 doses (i.p.), paynantheine did not counteract morphine CPP. 7-hydroxypaynantheine and 7-hydroxyspeciogynine displayed potency at δOR but limited µOR potency relative to 7-hydroxymitragynine in vitro, and dose-dependently decreased voluntary alcohol consumption in WT but not δOR in KO mice. 7-hydroxyspeciogynine has a maximally tolerated dose of at least 10 mg∙kg-1 (s.c.) at which it did not produce significant CPP neither alter general locomotion nor induce noticeable seizures. Conclusion and Implications: Derivatizing kratom alkaloids with the goal of enhancing δOR potency and reducing off-target effects could provide a pathway to develop novel lead compounds to treat alcohol use disorder with an improved therapeutic window.

7.
ACS Omega ; 4(13): 15504-15511, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31572851

ABSTRACT

Genetically encoded fluorescent and luminescent indicators have revolutionized our ability to monitor physiology in real time, but the separate development of new sensors for each of these imaging modalities involves substantial effort and resources. Methods to rapidly engineer multimodal sensors would, therefore, significantly accelerate the diversification of sensors for simultaneous use in different systems and applications. We hypothesized that the enhanced Nano-lanterns could be incorporated into modular ratiometric sensors as an efficient approach to creating dual-mode fluorescent-luminescent sensors. As a proof-of-concept, we engineered an Epac1-based sensor that responds to cyclic adenosine monophosphate binding with a greater than 80% change in both Förster Resonance Energy Transfer and bioluminescent resonance energy transfer (BRET) modes. We also demonstrate that our new sensor reports cellular changes in G-protein-coupled signaling, and that the ratiometric BRET mode is bright enough for subcutaneous measurements in mice.

8.
Sensors (Basel) ; 19(16)2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31405152

ABSTRACT

Luciferase-based reporters provide a key measurement approach in a broad range of applications, from in vitro high-throughput screening to whole animal imaging. For example, luminescence intensity is widely used to measure promoter activity, protein expression levels, and cell growth. However, luminescence intensity measurements are subject to quantitative irregularities caused by luminescence decay and variation in reporter expression level. In contrast, bioluminescence resonance energy transfer (BRET) sensors provide the advantages of luciferase-based reporters but overcome the aforementioned irregularities because of the inherently ratiometric readout. Here, we generated a new ratiometric BRET sensor of ATP (ARSeNL-ATP detection with a Ratiometric mScarlet-NanoLuc sensor), and we demonstrated that it provides a stable and robust readout across protein, cell, and whole animal tissue contexts. The ARSeNL sensor was engineered by screening a color palette of sensors utilizing variants of the high photon flux NanoLuc luciferase as donors and a panel of red fluorescent proteins as acceptors. We found that the novel combination of NanoLuc and mScarlet exhibited the largest dynamic range, with a 5-fold change in the BRET ratio upon saturation with ATP. Importantly, the NanoLuc-mScarlet BRET pair provided a large spectral separation between luminescence emission channels that is compatible with green and red filter sets extensively used in typical biological microscopes and animal imaging systems. Using this new sensor, we showed that the BRET ratio was independent of luminescence intensity decay and sensor expression level, and the BRET ratio faithfully reported differences in live-cell energy metabolism whether in culture or within mouse tissue. In particular, BRET analyte sensors have not been used broadly in tissue contexts, and thus, in principle, our sensor could provide a new tool for in vivo imaging of metabolic status.


Subject(s)
Adenosine Triphosphate/analysis , Fluorescence Resonance Energy Transfer/methods , Adenosine Triphosphate/metabolism , Animals , Female , HEK293 Cells , Humans , Luminescent Measurements , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence , Protein Engineering , Single-Cell Analysis , Red Fluorescent Protein
9.
Proc Natl Acad Sci U S A ; 114(9): E1607-E1616, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28193860

ABSTRACT

Myosins play countless critical roles in the cell, each requiring it to be activated at a specific location and time. To control myosin VI with this specificity, we created an optogenetic tool for activating myosin VI by fusing the light-sensitive Avena sativa phototropin1 LOV2 domain to a peptide from Dab2 (LOVDab), a myosin VI cargo protein. Our approach harnesses the native targeting and activation mechanism of myosin VI, allowing direct inferences on myosin VI function. LOVDab robustly recruits human full-length myosin VI to various organelles in vivo and hinders peroxisome motion in a light-controllable manner. LOVDab also activates myosin VI in an in vitro gliding filament assay. Our data suggest that protein and lipid cargoes cooperate to activate myosin VI, allowing myosin VI to integrate Ca2+, lipid, and protein cargo signals in the cell to deploy in a site-specific manner.


Subject(s)
Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Actins/genetics , Actins/metabolism , Cell Line, Tumor , HeLa Cells , Humans , Optogenetics/methods , Second Messenger Systems/genetics
10.
Biophys J ; 105(4): 1027-36, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23972854

ABSTRACT

To investigate the relationship between a protein's sequence and its biophysical properties, we studied the effects of more than 100 mutations in Avena sativa light-oxygen-voltage domain 2, a model protein of the Per-Arnt-Sim family. The A. sativa light-oxygen-voltage domain 2 undergoes a photocycle with a conformational change involving the unfolding of the terminal helices. Whereas selection studies typically search for winners in a large population and fail to characterize many sites, we characterized the biophysical consequences of mutations throughout the protein using NMR, circular dichroism, and ultraviolet/visible spectroscopy. Despite our intention to introduce highly disruptive substitutions, most had modest or no effect on function, and many could even be considered to be more photoactive. Substitutions at evolutionarily conserved sites can have minimal effect, whereas those at nonconserved positions can have large effects, contrary to the view that the effects of mutations, especially at conserved positions, are predictable. Using predictive models, we found that the effects of mutations on biophysical function and allostery reflect a complex mixture of multiple characteristics including location, character, electrostatics, and chemistry.


Subject(s)
Avena , Light , Models, Molecular , Mutation , Plant Proteins/chemistry , Plant Proteins/metabolism , Allosteric Regulation , Amino Acid Sequence , Conserved Sequence , Evolution, Molecular , Molecular Sequence Data , Plant Proteins/genetics , Protein Structure, Tertiary , Structure-Activity Relationship
11.
Biotechnol Bioeng ; 106(6): 970-9, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20589674

ABSTRACT

Glial-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) have both been shown to enhance peripheral nerve regeneration following injury and target different neuronal populations. The delivery of either growth factor at the site of injury may, therefore, result in quantitative differences in motor nerve regeneration and functional recovery. In this study we evaluated the effect of affinity-based delivery of GDNF or NGF from fibrin-filled nerve guidance conduits (NGCs) on motor nerve regeneration and functional recovery in a 13 mm rat sciatic nerve defect. Seven experimental groups were evaluated consisting of GDNF or NGF and the affinity-based delivery system (DS) within NGCs, control groups excluding the DS and/or growth factor, and nerve isografts. Groups with growth factor in the conduit demonstrated equivalent or superior performance in behavioral tests and relative muscle mass measurements compared to isografts at 12 weeks. Additionally, groups with GDNF demonstrated greater specific twitch and tetanic force production in extensor digitorum longus (EDL) muscle than the isograft control, while groups with NGF produced demonstrated similar force production compared to the isograft control. Assessment of motor axon regeneration by retrograde labeling further revealed that the number of ventral horn neurons regenerating across NGCs containing GDNF and NGF DS was similar to the isograft group and these counts were greater than the groups without growth factor. Overall, the GDNF DS group demonstrated superior functional recovery and equivalent motor nerve regeneration compared to the isograft control, suggesting it has potential as a treatment for motor nerve injury.


Subject(s)
Drug Carriers/metabolism , Fibrin/metabolism , Nerve Growth Factors/pharmacology , Nerve Regeneration , Sciatic Nerve/injuries , Sciatic Neuropathy/drug therapy , Animals , Behavior/drug effects , Muscle Strength/drug effects , Muscles/anatomy & histology , Muscles/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...