Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38473429

ABSTRACT

Colorectal cancer metastasizes predominantly to the liver but also to the lungs and the peritoneum. The presence of extra-hepatic metastases limits curative (surgical) treatment options and is associated with very poor survival. The mechanisms governing multi-organ metastasis formation are incompletely understood. Here, we tested the hypothesis that the site of tumor growth influences extra-hepatic metastasis formation. To this end, we implanted murine colon cancer organoids into the primary tumor site (i.e., the caecum) and into the primary metastasis site (i.e., the liver) in immunocompetent mice. The organoid-initiated liver tumors were significantly more efficient in seeding distant metastases compared to tumors of the same origin growing in the caecum (intra-hepatic: 51 vs. 40%, p = 0.001; peritoneal cavity: 51% vs. 33%, p = 0.001; lungs: 30% vs. 7%, p = 0.017). The enhanced metastatic capacity of the liver tumors was associated with the formation of 'hotspots' of vitronectin-positive blood vessels surrounded by macrophages. RNA sequencing analysis of clinical samples showed a high expression of vitronectin in liver metastases, along with signatures reflecting hypoxia, angiogenesis, coagulation, and macrophages. We conclude that 'onward spread' from liver metastases is facilitated by liver-specific microenvironmental signals that cause the formation of macrophage-associated vascular hotspots. The therapeutic targeting of these signals may help to contain the disease within the liver and prevent onward spread.

2.
Surg Open Sci ; 18: 29-34, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38318321

ABSTRACT

Background: Surgical resection remains the main curative treatment for colorectal liver metastases (CRLM). Radiofrequency ablation (RFA) is increasingly employed for small, deep lying or otherwise inoperable lesions. However, RFA can induce pro-tumorigenic effects on residual tumor cells, hereby possibly promoting tumor recurrence. Contrastingly, post-RFA tumor debris as an antigen source can also generate anti-cancer immune responses. Utilizing this, current studies on combining RFA with immune therapy appear promising. Here, in an attempt to shed light on this controversy, cytokines involved in inflammation, (lymph)angiogenesis, immune cell recruitment and tumor cell invasion were investigated post-RFA versus post-resection in CRLM patients. Methods: Cytokine and chemokine serum levels pre-operation, 4 h and 24 h post-operation were analyzed in CRLM patients undergoing RFA (n = 8) or partial hepatectomy (n = 9) using Multiplex immunoassays. Statistical analyses were performed between as well as within individual intervention groups. Results: Post-RFA, significantly increased levels of acute phase proteins SAA1 and S100A8, IL-6, IL-1Ra, MIP3b (CCL19) and MMP9 were observed along with decreases in Fibronectin, MCP-1 (CCL2), and Tie-2. Post-resection, increased levels of PDGFbb, I309 (CCL1), Apelin, MIF, IL-1b and TNFα were seen. All p-values <0.05. Conclusion: Pro-inflammatory responses mediated by different cytokines were seen after both RFA and resection, possibly influencing residual tumor cells and tumor recurrence. As both ablation and resection trigger inflammation and immune cell recruitment (albeit via distinct mechanisms), these data suggest that further research may explore combining immune therapy with not only RFA but also resection. Key message: Analysis of patients' serum after radiofrequency ablation versus resection of colorectal liver metastases (CRLM) showed that these interventions trigger inflammation and immune cell recruitment, via different cyto- and chemokine pathways. This suggests a possible future strategy of combining immune therapy with not only ablative techniques but also with resection of CRLM.

3.
Front Oncol ; 13: 1062926, 2023.
Article in English | MEDLINE | ID: mdl-37077833

ABSTRACT

The liver has a complex and hierarchical segmental organization of arteries, portal veins, hepatic veins and lymphatic vessels. In-depth imaging of liver vasculature and malignancies could improve knowledge on tumor micro-environment, local tumor growth, invasion, as well as metastasis. Non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI) and positron-emission transmission (PET) are routine for clinical imaging, but show inadequate resolution at cellular and subcellular level. In recent years, tissue clearing - a technique rendering tissues optically transparent allowing enhanced microscopy imaging - has made great advances. While mainly used in the neurobiology field, recently more studies have used clearing techniques for imaging other organ systems as well as tumor tissues. In this study, our aim was to develop a reproducible tissue clearing and immunostaining model for visualizing intrahepatic blood microvasculature and tumor cells in murine colorectal liver metastases. CLARITY and 3DISCO/iDISCO+ are two established clearing methods that have been shown to be compatible with immunolabelling, most often in neurobiology research. In this study, CLARITY unfortunately resulted in damaged tissue integrity of the murine liver lobes and no specific immunostaining. Using the 3DISCO/iDISCO+ method, liver samples were successfully rendered optically transparent. After which, successful immunostaining of the intrahepatic microvasculature using panendothelial cell antigen MECA-32 and colorectal cancer cells using epithelial cell adhesion molecule (EpCAM) was established. This approach for tumor micro-environment tissue clearing would be especially valuable for allowing visualization of spatial heterogeneity and complex interactions of tumor cells and their environment in future studies.

4.
Gastroenterology ; 165(2): 429-444.e15, 2023 08.
Article in English | MEDLINE | ID: mdl-36906044

ABSTRACT

BACKGROUND & AIMS: Patients with colon cancer with liver metastases may be cured with surgery, but the presence of additional lung metastases often precludes curative treatment. Little is known about the processes driving lung metastasis. This study aimed to elucidate the mechanisms governing lung vs liver metastasis formation. METHODS: Patient-derived organoid (PDO) cultures were established from colon tumors with distinct patterns of metastasis. Mouse models recapitulating metastatic organotropism were created by implanting PDOs into the cecum wall. Optical barcoding was applied to trace the origin and clonal composition of liver and lung metastases. RNA sequencing and immunohistochemistry were used to identify candidate determinants of metastatic organotropism. Genetic, pharmacologic, in vitro, and in vivo modeling strategies identified essential steps in lung metastasis formation. Validation was performed by analyzing patient-derived tissues. RESULTS: Cecum transplantation of 3 distinct PDOs yielded models with distinct metastatic organotropism: liver only, lung only, and liver and lung. Liver metastases were seeded by single cells derived from select clones. Lung metastases were seeded by polyclonal clusters of tumor cells entering the lymphatic vasculature with very limited clonal selection. Lung-specific metastasis was associated with high expression of desmosome markers, including plakoglobin. Plakoglobin deletion abrogated tumor cell cluster formation, lymphatic invasion, and lung metastasis formation. Pharmacologic inhibition of lymphangiogenesis attenuated lung metastasis formation. Primary human colon, rectum, esophagus, and stomach tumors with lung metastases had a higher N-stage and more plakoglobin-expressing intra-lymphatic tumor cell clusters than those without lung metastases. CONCLUSIONS: Lung and liver metastasis formation are fundamentally distinct processes with different evolutionary bottlenecks, seeding entities, and anatomic routing. Polyclonal lung metastases originate from plakoglobin-dependent tumor cell clusters entering the lymphatic vasculature at the primary tumor site.


Subject(s)
Colonic Neoplasms , Liver Neoplasms , Lung Neoplasms , Mice , Animals , Humans , gamma Catenin/metabolism , Lung Neoplasms/pathology , Colonic Neoplasms/genetics , Liver Neoplasms/pathology
6.
Cancers (Basel) ; 14(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35158941

ABSTRACT

Neuropilin-2 (Nrp2), an important regulator of lymphangiogenesis and lymphatic metastasis, has been associated with progression in colorectal cancer (CRC). However, the tumor cell-intrinsic role of Nrp2 in cancer progression is incompletely understood. To address this question, we employed CRISPR-Cas9 technology to generate Nrp2-knockout organoids derived from murine CRC tumors with a mesenchymal phenotype. Transcriptome profiling and tumor tissue analysis showed that Nrp2 loss resulted in mesenchymal-to-epithelial transition (MET), which was accompanied with restored polarity and tight junction stabilization. Signaling pathway analysis revealed that Nrp2-knockout organoids acquire de novo dependency on insulin receptor (IR) signaling and autophagy as alternative survival mechanisms. Combined inhibition of IR signaling and autophagy prevented the stabilization of cell-cell junctions, reduced metabolic activity, and caused profound cell death in Nrp2-knockout organoids. Collectively, the data demonstrate a key role for Nrp2 in maintaining the aggressive phenotype and survival of tumor-derived CRC organoids. The identified connection between Nrp2, insulin receptor signaling and autophagy may guide the development of novel combination-treatment strategies for aggressive CRC.

7.
ACS Biomater Sci Eng ; 7(7): 3030-3042, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34185991

ABSTRACT

The lymphatic system is essential in maintaining tissue fluid homeostasis as well as antigen and immune cell transport to lymph nodes. Moreover, lymphatic vasculature plays an important role in various pathological processes, such as cancer. Fundamental to this research field are representative in vitro models. Here we present a microfluidic lymphatic vessel model to study lymphangiogenesis and its interaction with colon cancer organoids using a newly developed lymphatic endothelial cell (LEC) line. We generated immortalized human LECs by lentiviral transduction of human telomerase (hTERT) and BMI-1 expression cassettes into primary LECs. Immortalized LECs showed an increased growth potential, reduced senescence, and elongated lifespan with maintenance of typical LEC morphology and marker expression for over 12 months while remaining nontransformed. Immortalized LECs were introduced in a microfluidic chip, comprising a free-standing extracellular matrix, where they formed a perfusable vessel-like structure against the extracellular matrix. A gradient of lymphangiogenic factors over the extracellular matrix gel induced the formation of luminated sprouts. Adding mouse colon cancer organoids adjacent to the lymphatic vessel resulted in a stable long-lived coculture model in which cancer cell-induced lymphangiogenesis and cancer cell motility can be investigated. Thus, the development of a stable immortalized lymphatic endothelial cell line in a membrane-free, perfused microfluidic chip yields a highly standardized lymphangiogenesis and lymphatic vessel-tumor cell coculture assay.


Subject(s)
Endothelial Cells , Lymphatic Vessels , Biology , Coculture Techniques , Humans , Microfluidics
8.
Sci Rep ; 10(1): 21808, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311587

ABSTRACT

The liver's cellular functions are sustained by a hierarchical, segmentally-organized vascular system. Additionally, liver lymphatic vessels are thought to drain to perihepatic lymph nodes. Surprisingly, while recent findings highlight the importance of organ-specific lymphatics, the functional anatomy of liver lymphatics has not been mapped out. In literature, no segmental or preferential lymphatic drainage patterns are known to exist. We employ a novel murine model of liver lymphangiography and in vivo microscopy to delineate the lymphatic drainage patterns of individual liver lobes. Our data from blue dye liver lymphangiography show preferential lymphatic drainage patterns: Right lobe mainly to hepatoduodenal ligament lymph node 1 (LN1); left lobe to hepatoduodenal ligament LN1 + LN2 concurrently; median lobe showed a more variable LN1/LN2 drainage pattern with increased (sometimes exclusive) mediastinal thoracic lymph node involvement, indicating that part of the liver can drain directly to the mediastinum. Upon ferritin lymphangiography, we observed no functional communication between the lobar lymphatics. Altogether, these results show the existence of preferential lymphatic drainage patterns in the murine liver. Moreover, this drainage can occur directly to mediastinal lymph nodes and there is no interlobar lymphatic flow. Collectively, these data provide the first direct evidence that liver lymphatic drainage patterns follow segmental anatomy.


Subject(s)
Intravital Microscopy , Liver/anatomy & histology , Lymph Nodes/anatomy & histology , Lymphatic Vessels/anatomy & histology , Animals , Liver/metabolism , Lymph Nodes/metabolism , Lymphatic Vessels/metabolism , Male , Mice
9.
Oncotarget ; 9(28): 19490-19507, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29731961

ABSTRACT

Primary human colorectal tumors with a high stromal content have an increased capacity to metastasize. Cancer-associated fibroblasts (CAFs) promote metastasis, but the contribution of other stromal cell types is unclear. Here we searched for additional stromal cell types that contribute to aggressive tumor cell behavior. By making use of the 'immunome compendium'-a collection of gene signatures reflecting the presence of specific immune cell-types-we show that macrophage signatures are most strongly associated with a high CAF content and with poor prognosis in multiple large cohorts of primary tumors and liver metastases. Co-culturing macrophages with patient-derived colonospheres promoted 'budding' of small clusters of tumor cells from the bulk. Immunohistochemistry showed that budding tumor clusters in stroma-rich areas of T1 colorectal carcinomas were surrounded by macrophages. In vitro budding was accompanied by reduced levels of the tight junction protein occludin, but OCLN mRNA levels did not change, nor did markers of epithelial mesenchymal transition. Budding was accompanied by nuclear accumulation of ß-catenin, which was also observed in budding tumor cell clusters in situ. The NFκB inhibitor Sanguinarine resulted in a decrease in MMP7 protein expression and both NFκB inhibitor Sanguinarine and MMP inhibitor Batimastat prevented occludin degradation and budding. We conclude that macrophages contribute to the aggressive nature of stroma-rich colon tumors by promoting an MMP-dependent pathway that operates in parallel to classical EMT and leads to tight junction disruption.

10.
Ann Surg ; 266(5): 765-771, 2017 11.
Article in English | MEDLINE | ID: mdl-28742689

ABSTRACT

OBJECTIVES: To investigate the relevance of lymphangiogenic gene expression in primary and liver metastasis of colorectal cancer (CRC) and identify determinants of lymphatic invasion. BACKGROUND: Lymphatic development promoting vascular endothelial growth factor C (VEGFC) is associated with poor outcome in primary CRC. For colorectal liver metastasis (CRLM), intrahepatic lymph invasion and lymph node metastasis are poor prognostic factors. Exact biological factors promoting lymphatic involvement remain elusive, just as the association with molecular subtypes of CRC. METHODS: We designed a lymphangiogenic gene set (VEGFC, Nrp-2, PDPN, LYVE-1, MRC1, CCL-21) and applied it to large datasets of CRC. Gene expression of the lymphangiogenic signature was assessed in resected CRLM specimens by Rt-QPCR. In vitro experiments were performed with colon cancer cell line Colo320 (high Nrp-2 expression) and human dermal microvascular lymphatic endothelial cells (LECs). RESULTS: Lymphangiogenic gene expression was associated with poor prognosis in both primary and liver metastasis of CRC. CRLM with high expression of consensus molecular subtype-4 identifier genes also exhibited high lymphangiogenic gene expression. Lymph node recurrence following CRLM resection was associated with high expression of VEGFC and Nrp-2. Blocking Nrp-2 significantly reduced invasion of Colo320 cells through an LEC monolayer. CONCLUSIONS: Lymphangiogenic gene expression is correlated with worse prognosis and consensus molecular subtype-4 in both primary and liver metastatic CRC. VEGFC and Nrp-2 expression may be predictive of lymph node involvement in recurrence after resection of CRLM. Nrp-2, expressed on both tumor and LECs, may have a mechanistic role in lymphatic invasion and is a potential novel target in CRC.


Subject(s)
Biomarkers, Tumor/genetics , Colorectal Neoplasms/pathology , Hepatectomy , Liver Neoplasms/metabolism , Liver Neoplasms/surgery , Lymph Nodes/pathology , Lymphangiogenesis/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/mortality , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Hepatectomy/methods , Humans , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Lymphatic Metastasis , Prognosis , Real-Time Polymerase Chain Reaction
11.
Case Rep Surg ; 2017: 6940649, 2017.
Article in English | MEDLINE | ID: mdl-28299229

ABSTRACT

Brunner's gland hamartoma, also called hyperplasia, adenoma, and Brunneroma, is an extremely rare benign proliferative lesion of Brunner's glands in the duodenum. While being mostly small and asymptomatic, they can result in gastrointestinal bleeding and obstruction. We report the case of a 54-year-old man presenting with melena and severe anemia requiring blood transfusion. CT scans showed a large mass of 8 cm in diameter, presumably arising in the duodenum. Endoscopic biopsies were not conclusive. As we were unable to determine the nature of the mass preoperatively and due to the severe symptoms, its size, and the uncertain malignant potential, a classic Whipple procedure was performed. The resected specimen showed extensive proliferation of Brunner's glands without signs of malignancy.

12.
Cell Death Dis ; 8(3): e2669, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28300842

ABSTRACT

CD95 is best known for its ability to induce apoptosis via a well-characterized pathway involving caspase-mediated proteolytic events. However, in apoptosis-resistant cell lines of diverse cancer types stimulation of CD95 primarily has pro-tumorigenic effects that affect many of the hallmarks of cancer. For instance, in colon cancer cells with a mutant KRAS gene CD95 primarily promotes invasion and metastasis. In the current study, we further investigated the context dependency of the consequences of CD95 activation in colon cancer. We used a series of patient-derived three-dimensional colon cancer cultures and studied their response to stimulation with CD95 ligand (CD95L). CD95L had a strong inhibitory effect on the clone-forming capacity of five out of nine cultures. In line with previous work, these cultures all had a wild-type KRAS gene and expressed high levels of CD95. Furthermore, the most sensitive cultures were characterized by microsatellite instability (MSI) and deficient mismatch repair. The reduced clonogenic growth of MSI-type colonospheres resulting from chronic CD95 stimulation was only partly due to apoptosis as many tumor cells survived treatment, yet were unable to regenerate clones. CD95 stimulation caused an irreversible cell cycle arrest, which was associated with cytokine secretion, similar to the senescence-associated secretory phenotype (SASP), and expression of senescence-associated ß-galactosidase. In human colon cancer cohorts, CD95 expression was strongly correlated with the recently identified consensus molecular subtype 1 (CMS1), which mainly consists of MSI-high tumors, and with two independent SASP signatures. Mechanistically, CD95-induced senescence was caused by chronic DNA damage via caspase-activated DNAse resulting in p53 activation and p21 expression, with a minor contribution of the SASP. We conclude that induction of senescence is a hitherto unrecognized consequence of high CD95 expression, which appears to be most relevant for CMS1.


Subject(s)
Caspase 3/metabolism , Cellular Senescence/physiology , Colonic Neoplasms/metabolism , DNA Damage/physiology , DNA Mismatch Repair/physiology , Fas Ligand Protein/metabolism , fas Receptor/metabolism , Apoptosis/genetics , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/physiology , Cell Line , Cell Line, Tumor , Cell Survival/genetics , Cell Survival/physiology , Cellular Senescence/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , DNA Damage/genetics , DNA Mismatch Repair/genetics , Deoxyribonucleases/metabolism , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , HEK293 Cells , Humans , Microsatellite Instability , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...