Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cancer ; 151(12): 2215-2228, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36094276

ABSTRACT

Oncogenic human papillomavirus (HPV) types control the phenotype of cervical cancer cells through the sustained expression of the viral E6/E7 oncogenes. Here, we show that they strongly restrain expression of the putative tumor suppressor protein Dkk1 (Dickkopf-1) in HPV-positive cervical cancer cells through the restriction of p53 expression by the continuously expressed endogenous E6 oncoprotein. Moreover, our study reveals that compromised Dkk1 expression is linked to increased resistance of HPV-positive cervical cancer cells toward the proapoptotic activity of Cisplatin. Although Dkk1 can act as a Wnt antagonist, the antiapoptotic effect resulting from Dkk1 repression is not linked to an activation of this pathway. Rather, transcriptome and functional analyses uncover that Dkk1 repression leads to a strongly diminished stimulation of c-Jun N-terminal kinase (JNK) signaling which is required for efficient apoptosis induction by Cisplatin in cervical cancer cells. Further, we observed that Dkk1-depleted cervical cancer cells induce senescence under Cisplatin treatment instead of apoptosis, suggesting that Dkk1 levels can strongly influence the phenotypic response of these cells toward Cisplatin. Collectively, these results provide new insights into the virus/host cell crosstalk in cervical cancer cells by identifying Dkk1 as a cellular target which is maintained under strong negative control by the continuous expression of the HPV oncogenes. Moreover, they identify Dkk1 as a critical determinant for the sensitivity of cervical cancer cells toward Cisplatin, showing that Dkk1 repression leads to increased Cisplatin resistance by impairing proapoptotic JNK signaling.


Subject(s)
Alphapapillomavirus , Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Alphapapillomavirus/genetics , Cisplatin/pharmacology , JNK Mitogen-Activated Protein Kinases/genetics , Oncogene Proteins, Viral/metabolism , Oncogenes , Papillomaviridae/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/complications , Papillomavirus Infections/drug therapy , Papillomavirus Infections/genetics , Repressor Proteins/genetics , Tumor Suppressor Protein p53/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Intracellular Signaling Peptides and Proteins/metabolism
2.
Cell Chem Biol ; 29(8): 1353-1361.e6, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35705094

ABSTRACT

The development of antibodies that target specific glycan structures on cancer cells or human pathogens poses a significant challenge due to the immense complexity of naturally occurring glycans. Automated glycan assembly enables the production of structurally homogeneous glycans in amounts that are difficult to derive from natural sources. Nanobodies (Nbs) are the smallest antigen-binding domains of heavy-chain-only antibodies (hcAbs) found in camelids. To date, the development of glycan-specific Nbs using synthetic glycans has not been reported. Here, we use defined synthetic glycans for alpaca immunization to elicit glycan-specific hcAbs, and describe the identification, isolation, and production of a Nb specific for the tumor-associated carbohydrate antigen Globo-H. The Nb binds the terminal fucose of Globo-H and recognizes synthetic Globo-H in solution and native Globo-H on breast cancer cells with high specificity. These results demonstrate the potential of our approach for generating glycan-targeting Nbs to be used in biomedical and biotechnological applications.


Subject(s)
Single-Domain Antibodies , Antibodies , Fucose , Humans , Immunization , Polysaccharides , Single-Domain Antibodies/chemistry
3.
Int J Cancer ; 146(2): 461-474, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31603527

ABSTRACT

The malignant growth of human papillomavirus (HPV)-positive cancer cells is dependent on the continuous expression of the viral E6/E7 oncogenes. Here, we examined the effects of iron deprivation on the phenotype of HPV-positive cervical cancer cells. We found that iron chelators, such as the topical antifungal agent ciclopirox (CPX), strongly repress HPV E6/E7 oncogene expression, both at the transcript and protein level. CPX efficiently blocks the proliferation of HPV-positive cancer cells by inducing cellular senescence. Although active mTOR signaling is considered to be critical for the cellular senescence response towards a variety of prosenescent agents, CPX-induced senescence occurs under conditions of severely impaired mTOR signaling. Prolonged CPX treatment leads to p53-independent Caspase-3/7 activation and induction of apoptosis. CPX also eliminates HPV-positive cancer cells under hypoxic conditions through induction of apoptosis. Taken together, these results show that iron deprivation exerts profound antiviral and antiproliferative effects in HPV-positive cancer cells and suggest that iron chelators, such as CPX, possess therapeutic potential as HPV-inhibitory, prosenescent and proapoptotic agents in both normoxic and hypoxic environments.


Subject(s)
Ciclopirox/pharmacology , DNA-Binding Proteins/antagonists & inhibitors , Oncogene Proteins, Viral/antagonists & inhibitors , Papillomavirus E7 Proteins/antagonists & inhibitors , Papillomavirus Infections/drug therapy , Repressor Proteins/antagonists & inhibitors , Uterine Cervical Neoplasms/drug therapy , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Apoptosis/drug effects , Cellular Senescence/drug effects , Ciclopirox/therapeutic use , DNA-Binding Proteins/metabolism , Female , HCT116 Cells , HeLa Cells , Humans , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Oncogene Proteins, Viral/metabolism , Papillomavirus E7 Proteins/metabolism , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Repressor Proteins/metabolism , Spheroids, Cellular , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...