Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4420, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789474

ABSTRACT

By combining the porosity of crystalline metal-organic frameworks (MOFs) with the unique processability of the liquid state, melt-quenched MOF glasses offer exciting opportunities for molecular separation. However, progress in this field is limited by two factors. Firstly, only very few MOFs melt at elevated temperatures and transform into stable glasses upon cooling the corresponding MOF liquid. Secondly, the MOF glasses obtained thus far feature only very small porosities and very small pore sizes. Here, we demonstrate solvent-assisted linker exchange (SALE) as a versatile method to prepare highly porous melt-quenched MOF glasses from the canonical ZIF-8. Two additional organic linkers are incorporated into the non-meltable ZIF-8, yielding high-entropy, linker-exchanged ZIF-8 derivatives undergoing crystal-to-liquid-to-glass phase transitions by thermal treatment. The ZIF-8 glasses demonstrate specific pore volumes of about 0.2 cm3g-1, adsorb large amounts of technologically relevant C3 and C4 hydrocarbons, and feature high kinetic sorption selectivities for the separation of propylene from propane.

2.
Adv Sci (Weinh) ; 11(4): e2305070, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38032122

ABSTRACT

Despite exhaled human breath having enabled noninvasive diabetes diagnosis, selective acetone vapor detection by fluorescence approach in the diabetic range (1.8-3.5 ppm) remains a long-standing challenge. A set of water-resistant luminescent metal-organic framework (MOF)-based composites have been reported for detecting acetone vapor in the diabetic range with a limit of detection of 200 ppb. The luminescent materials possess the ability to selectively detect acetone vapor from a mixture comprising nitrogen, oxygen, carbon dioxide, water vapor, and alcohol vapor, which are prevalent in exhaled breath. It is noteworthy that this is the first luminescent MOF material capable of selectively detecting acetone vapor in the diabetic range via a turn-on mechanism. The material can be reused within a matter of minutes under ambient conditions. Industrially pertinent electrospun luminescent fibers are likewise fabricated alongside various luminescent films for selective detection of ultratrace quantities of acetone vapor present in the air. Ab initio theoretical calculations combined with in situ synchrotron-based dosing studies uncovered the material's remarkable hypersensitivity toward acetone vapor. Finally, a freshly designed prototype fluorescence-based portable optical sensor is utilized as a proof-of-concept for the rapid detection of acetone vapor within the diabetic range.

3.
Nat Commun ; 14(1): 4200, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452021

ABSTRACT

Responsive metal-organic frameworks (MOFs) that display sigmoidal gas sorption isotherms triggered by discrete gas pressure-induced structural transformations are highly promising materials for energy related applications. However, their lack of transportability via continuous flow hinders their application in systems and designs that rely on liquid agents. We herein present examples of responsive liquid systems which exhibit a breathing behaviour and show step-shaped gas sorption isotherms, akin to the distinct oxygen saturation curve of haemoglobin in blood. Dispersions of flexible MOF nanocrystals in a size-excluded silicone oil form stable porous liquids exhibiting gated uptake for CO2, propane and propylene, as characterized by sigmoidal gas sorption isotherms with distinct transition steps. In situ X-ray diffraction studies show that the sigmoidal gas sorption curve is caused by a narrow pore to large pore phase transformation of the flexible MOF nanocrystals, which respond to gas pressure despite being dispersed in silicone oil. Given the established flexible nature and tunability of a range of MOFs, these results herald the advent of breathing porous liquids whose sorption properties can be tuned rationally for a variety of technological applications.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Porosity , Biological Transport , Propane , Silicone Oils
4.
J Am Chem Soc ; 145(16): 9273-9284, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37070213

ABSTRACT

The liquid phase of metal-organic frameworks (MOFs) is key for the preparation of melt-quenched bulk glasses as well as the shaping of these materials for various applications; however, only very few MOFs can be melted and transformed into stable glasses. Here, the solvothermal and mechanochemical preparation of a new series of functionalized derivatives of ZIF-4 (Zn(im)2, where im- = imidazolate and ZIF = zeolitic imidazolate framework) containing the cyano-functionalized imidazolate linkers CNim- (4-cynanoimidazolate) and dCNim- (4,5-dicyanoimidazolate) is reported. The strongly electron-withdrawing nature of the CN groups facilitates low-temperature melting of the materials (below 310 °C for some derivatives) and the formation of microporous ZIF glasses with remarkably low glass-transition temperatures (down to only about 250 °C) and strong resistance against recrystallization. Besides conventional ZIF-4, the CN-functionalized ZIFs are so far the only MOFs to show an exothermic framework collapse to a low-density liquid phase and a subsequent transition to a high-density liquid phase. By systematic adjustment of the fraction of cyano-functionalized linkers in the ZIFs, we derive fundamental insights into the thermodynamics of the unique polyamorphic nature of these glass formers as well as further design rules for the porosity of the ZIF glasses and the viscosity of their corresponding liquids. The results provide new insights into the unusual phenomenon of liquid-liquid transitions as well as a guide for the chemical diversification of meltable MOFs, likely with implications beyond the archetypal ZIF glass formers.

5.
Nat Commun ; 13(1): 7750, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36517486

ABSTRACT

Metal-organic framework (MOF) glasses are a new class of glass materials with immense potential for applications ranging from gas separation to optics and solid electrolytes. Due to the inherent difficulty to determine the atomistic structure of amorphous glasses, the intrinsic structural porosity of MOF glasses is only poorly understood. Here, we investigate the porosity features (pore size and pore limiting diameter) of a series of prototypical MOF glass formers from the family of zeolitic imidazolate frameworks (ZIFs) and their corresponding glasses. CO2 sorption at 195 K allows quantifying the microporosity of these materials in their crystalline and glassy states, also providing excess to the micropore volume and the apparent density of the ZIF glasses. Additional hydrocarbon sorption data together with X-ray total scattering experiments prove that the porosity features of the ZIF glasses depend on the types of organic linkers. This allows formulating design principles for a targeted tuning of the intrinsic microporosity of MOF glasses. These principles are counterintuitive and contrary to those established for crystalline MOFs but show similarities to strategies previously developed for porous polymers.

6.
Angew Chem Int Ed Engl ; 61(21): e202117565, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35119185

ABSTRACT

The high-pressure behaviour of flexible zeolitic imidazolate frameworks (ZIFs) of the ZIF-62 family with the chemical composition M(im)2-x (bim)x is presented (M2+ =Zn2+ , Co2+ ; im- =imidazolate; bim- =benzimidazolate, 0.02≤x≤0.37). High-pressure powder X-ray diffraction shows that the materials contract reversibly from an open pore (op) to a closed pore (cp) phase under a hydrostatic pressure of up to 4000 bar. Sequentially increasing the bim- fraction (x) reinforces the framework, leading to an increased threshold pressure for the op-to-cp phase transition, while the total volume contraction across the transition decreases. Most importantly, the typical discontinuous op-to-cp transition (first order) changes to an unusual continuous transition (second order) for x≥0.35. This allows finetuning of the void volume and the pore size of the material continuously by adjusting the pressure, thus opening new possibilities for MOFs in pressure-switchable devices, membranes, and actuators.

7.
Nat Commun ; 12(1): 4097, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34215743

ABSTRACT

Stimuli-responsive flexible metal-organic frameworks (MOFs) remain at the forefront of porous materials research due to their enormous potential for various technological applications. Here, we introduce the concept of frustrated flexibility in MOFs, which arises from an incompatibility of intra-framework dispersion forces with the geometrical constraints of the inorganic building units. Controlled by appropriate linker functionalization with dispersion energy donating alkoxy groups, this approach results in a series of MOFs exhibiting a new type of guest- and temperature-responsive structural flexibility characterized by reversible loss and recovery of crystalline order under full retention of framework connectivity and topology. The stimuli-dependent phase change of the frustrated MOFs involves non-correlated deformations of their inorganic building unit, as probed by a combination of global and local structure techniques together with computer simulations. Frustrated flexibility may be a common phenomenon in MOF structures, which are commonly regarded as rigid, and thus may be of crucial importance for the performance of these materials in various applications.

8.
J Am Chem Soc ; 141(31): 12362-12371, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31288513

ABSTRACT

Porous glasses from metal-organic frameworks (MOFs) represent a new class of functional inorganic-organic materials, which have been proposed for applications ranging from solid electrolytes to radioactive waste storage. So far, just a few zeolitic imidazolate frameworks (ZIFs), a subset of MOFs, have been reported to melt and the structural and compositional requirements for MOF melting and glass formation are poorly understood. Here, we show how the melting point of the prototypical ZIF-4/ZIF-62(M) frameworks (composition M(im)2-x(bim)x; M2+ = Co2+, Zn2+; im- = imidazolate; bim- = benzimidazolate) can be controlled systematically by adjusting the molar ratio of the two imidazolate-type linkers im- and bim-. By covering the entire range from x = 0 to 0.35, we unveil a delicate transition from ZIF materials showing sequential amorphization/recrystallization to derivatives exhibiting coherent melting and a liquid phase that is stable over a large temperature window. The melting point of this ZIF system is a direct function of x and can be lowered from ca. 430 °C to only 370 °C, by far the lowest melting point reported for a three-dimensional porous MOF. On the basis of our results, we postulate compositional requirements for ZIF melting and glass formation, which may guide the search for other meltable ZIFs. Moreover, gas physisorption experiments establish that the ZIF glasses adsorb technologically relevant C3 and C4 hydrocarbons. Importantly, the adsorption kinetics are much faster for propylene compared to propane and are also dependent on the im-:bim- ratio, thus demonstrating the potential of these ZIF glasses for applications in gas separation.

SELECTION OF CITATIONS
SEARCH DETAIL
...