Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomolecules ; 11(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34827613

ABSTRACT

Spontaneous intracerebral hemorrhage (ICH) causes, besides the primary brain injury, a secondary brain injury (SBI), which is induced, amongst other things, by oxidative stress (OS) and inflammation, determining the patient's outcome. This study aims to assess the impact of OS in plasma and cerebrospinal fluid (CSF) on clinical outcomes in patients with ICH. A total of 19 ICH (volume > 30 cc) patients and 29 control patients were included. From day one until seven, blood and CSF samples were obtained, and ICH volume was calculated. OS markers, like malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione-sulfhydryl (GSH), and the total antioxidant status (TAS) were measured. Clinical data on treatment and outcome were determined. Patients with mRS ≤ 4 showed significantly elevated SOD and GSH-Px levels in plasma compared to patients with poor CO (p = 0.004; p = 0.002). Initial increased TAS in plasma and increased MDA in CSF were linked to an unfavorable outcome after six months (p = 0.06, r = 0.45; p = 0.05, r = 0.44). A higher ICH volume was associated with a worse outcome at week six (p = 0.04, r = 0.47). OS plays a significant role in SBI. Larger ICHs, elevated MDA in CSF, and TAS in plasma were associated with a detrimental outcome, whereas higher plasma-SOD and -GSH-Px were associated with a favorable outcome.


Subject(s)
Cerebral Hemorrhage , Oxidative Stress , Adult , Glutathione Peroxidase , Humans , Malondialdehyde , Middle Aged
2.
J Clin Med ; 10(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809085

ABSTRACT

BACKGROUND: Subarachnoid hemorrhage (SAH) is a devastating disease with high morbidity and mortality. Hypoxia-induced changes and hemoglobin accumulation within the subarachnoid space are thought to lead to oxidative stress, early brain injury, and delayed vasospasm. This study aimed to evaluate the antioxidant status and its impact on neurological outcome in patients with aneurysmal SAH. METHODS: In this prospective observational study, 29 patients with aneurysmal SAH were included (mean age 54.7 ± 12.4). Blood and cerebrospinal fluid (CSF) samples were collected on days (d) 1, 3, and 7. In addition, 29 patients without intracranial hemorrhage served as controls. The antioxidant system was analyzed by glutathione peroxidase (GSH-Px; U/L) and total and free glutathione-sulfhydryl (GSH; mg/L) in the plasma. Superoxide dismutase (SOD, U/mL) and total antioxidant capacity (TAC, µmol/L) were measured in the serum and CSF. Clinical data were compiled on admission (Hunt and Hess grade, Fisher grade, and GCS). Neurological and cognitive outcome (modified Rankin scale (mRS), Glasgow Outcome Scale Extended (GOSE) and Montreal Cognitive Assessment (MoCA)) was assessed after 6 weeks (6 w) and 6 months (6 m). RESULTS: Plasma levels of SOD increased from day 1 to 7 after SAH (d1: 1.22 ± 0.36 U/L; d3: 1.25 ± 0.33 U/L, p = 0.99; d7: 1.52 ± 0.4 U/L, p = 0.019) and were significantly higher compared to controls (1.11 ± 0.27 U/L) at day 7 (p < 0.001). Concordantly, CSF levels of SOD increased from day 1 to 7 after SAH (d1: 1.22 ± 0.41 U/L; d3: 1.77 ± 0.73 U/L, p = 0.10; d7: 2.37 ± 1.29 U/L, p < 0.0001) without becoming significantly different compared to controls (1.74 ± 0.8 U/L, p = 0.09). Mean plasma TAC at day 1 (d1: 77.87 ± 49.72 µmol/L) was not statistically different compared to controls (46.74 ± 32.42 µmol/L, p = 0.25). TAC remained unchanged from day 1 to 7 (d3: 92.64 ± 68.58 µmol/L, p = 0.86; d7: 74.07 ± 54.95 µmol/L, p = 0.8) in plasma. TAC in CSF steeply declined from day 1 to 7 in patients with SAH becoming significantly different from controls at days 3 and 7 (d3: 177.3 ± 108.7 µmol/L, p = 0.0046; d7: 85.35 ± 103.9 µmol/L, p < 0.0001). Decreased SOD levels in plasma and CSF are associated with a worse neurological outcome 6 weeks (mRS: CSF p = 0.0001; plasma p = 0.027/GOSE: CSF p = 0.001; plasma p = 0.001) and 6 months (mRS: CSF p = 0.001; plasma p = 0.09/GOSE: CSF p = 0.001; plasma p = 0.001) after SAH. Increased plasma TAC correlated with a worse neurological outcome 6 weeks (mRS: p = 0.001/GOSE p = 0.001) and 6 months (mRS p = 0.001/GOSE p = 0.001) after SAH. CONCLUSION: In our study, a reduction in the antioxidative enzyme SOD and elevated TAC were associated with a poorer neurological outcome reflected by mRS and GOSE at 6 weeks and 6 months after SAH. A lower initial SOD CSF concentration was associated with the late deterioration of cognitive ability. These findings support the mounting evidence of the role of oxidative stress in early brain injury formation and unfavorable outcome after SAH.

3.
PLoS One ; 15(11): e0241565, 2020.
Article in English | MEDLINE | ID: mdl-33175864

ABSTRACT

BACKGROUND: The cerebral thrombin system is activated in the early stage after intracerebral hemorrhage (ICH). Expression of thrombin leads to concentration dependent secondary neuronal damage and detrimental neurological outcome. In this study we aimed to investigate the impact of thrombin concentration and activity in the cerebrospinal fluid (CSF) of patients with ICH on clinical outcome. METHODS: Patients presenting with space-occupying lobar supratentorial hemorrhage requiring extra-ventricular drainage (EVD) were included in our study. The CSF levels of thrombin, its precursor prothrombin and the Thrombin-Antithrombin complex (TAT) were measured using enzyme linked immune sorbent assays (ELISA). The oxidative stress marker Superoxide dismutase (SOD) was assessed in CSF. Initial clot size and intraventricular hemorrhage (IVH) volume was calculated based on by computerized tomography (CT) upon admission to our hospital. Demographic data, clinical status at admission and neurological outcome were assessed using the modified Rankin Scale (mRS) at 6-weeks and 6-month after ICH. RESULTS: Twenty-two consecutive patients (9 females, 11 males) with supratentorial hemorrhage were included in this study. CSF concentrations of prothrombin (p < 0.005), thrombin (p = 0.005) and TAT (p = 0.046) were statistical significantly different in patients with ICH compared to non-hemorrhagic CSF samples. CSF concentrations of thrombin 24h after ICH correlated with the mRS index after 6 weeks (r2 = 0.73; < 0.005) and 6 months (r2 = 0.63; < 0.005) after discharge from hospital. Thrombin activity, measured via TAT as surrogate parameter of coagulation, likewise correlated with the mRS at 6 weeks (r2 = 0.54; < 0.01) and 6 months (r2 = 0.66; < 0.04). High thrombin concentrations coincide with higher SOD levels 24h after ICH (p = 0.01). CONCLUSION: In this study we found that initial thrombin concentration and activity in CSF of ICH patients did not correlate with ICH and IVH volume but are associated with a poorer functional neurological outcome. These findings support mounting evidence of the role of thrombin as a contributor to secondary injury formation after ICH.


Subject(s)
Cerebral Hemorrhage/complications , Hydrocephalus/diagnosis , Thrombin/cerebrospinal fluid , Adult , Aged , Aged, 80 and over , Biomarkers/cerebrospinal fluid , Cerebral Hemorrhage/cerebrospinal fluid , Cerebral Hemorrhage/diagnosis , Cerebral Hemorrhage/therapy , Drainage , Female , Follow-Up Studies , Humans , Hydrocephalus/etiology , Male , Middle Aged , Prognosis , Thrombin/metabolism , Tomography, X-Ray Computed , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL