Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
IUCrJ ; 8(Pt 5): 775-783, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34584738

ABSTRACT

Many soft-matter systems are composed of macromolecules or nanoparticles suspended in water. The characteristic times at intrinsic length scales of a few nanometres fall therefore in the microsecond and sub-microsecond time regimes. With the development of free-electron lasers (FELs) and fourth-generation synchrotron light-sources, time-resolved experiments in such time and length ranges will become routinely accessible in the near future. In the present work we report our findings on prototypical soft-matter systems, composed of charge-stabilized silica nanoparticles dispersed in water, with radii between 12 and 15 nm and volume fractions between 0.005 and 0.2. The sample dynamics were probed by means of X-ray photon correlation spectroscopy, employing the megahertz pulse repetition rate of the European XFEL and the Adaptive Gain Integrating Pixel Detector. We show that it is possible to correctly identify the dynamical properties that determine the diffusion constant, both for stationary samples and for systems driven by XFEL pulses. Remarkably, despite the high photon density the only observable induced effect is the heating of the scattering volume, meaning that all other X-ray induced effects do not influence the structure and the dynamics on the probed timescales. This work also illustrates the potential to control such induced heating and it can be predicted with thermodynamic models.

2.
Phys Rev E ; 104(1): L012602, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412357

ABSTRACT

We study the structure and dynamics of colloidal particles with a spherical hard core and a thermo-responsive soft shell over the whole phase diagram by means of small-angle x-ray scattering and x-ray photon correlation spectroscopy. By changing the effective volume fraction by temperature and particle concentration, liquid, repulsive glass. and attractive gel phases are observed. The dynamics slow down with increasing volume fraction in the liquid phase and reflect a Vogel-Fulcher-Tamann behavior known for fragile glass formers. We find a liquid-glass transition above 50 vol.% that is independent of the particles' concentration and temperature. In an overpacked state at effective volume fractions above 1, the dispersion does not show a liquid phase but undergoes a gel-glass transition at an effective volume fraction of 34 vol.%. At the same concentration, extrema of subdiffusive dynamics are found in the liquid phase at lower weight fractions. We interpret this as dynamic precursors of the glass-gel transition.

3.
Proc Natl Acad Sci U S A ; 117(39): 24110-24116, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32934145

ABSTRACT

Dynamics and kinetics in soft matter physics, biology, and nanoscience frequently occur on fast (sub)microsecond but not ultrafast timescales which are difficult to probe experimentally. The European X-ray Free-Electron Laser (European XFEL), a megahertz hard X-ray Free-Electron Laser source, enables such experiments via taking series of diffraction patterns at repetition rates of up to 4.5 MHz. Here, we demonstrate X-ray photon correlation spectroscopy (XPCS) with submicrosecond time resolution of soft matter samples at the European XFEL. We show that the XFEL driven by a superconducting accelerator provides unprecedented beam stability within a pulse train. We performed microsecond sequential XPCS experiments probing equilibrium and nonequilibrium diffusion dynamics in water. We find nonlinear heating on microsecond timescales with dynamics beyond hot Brownian motion and superheated water states persisting up to 100 µs at high fluences. At short times up to 20 µs we observe that the dynamics do not obey the Stokes-Einstein predictions.

4.
Chemphyschem ; 21(12): 1318-1325, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32250508

ABSTRACT

We study the structure and dynamics of poly(N-isopropylacrylamide) (PNIPAm) core-shell nanogels dispersed in aqueous trimethylamine N-oxide (TMAO) solutions by means of small-angle X-ray scattering and X-ray photon correlation spectroscopy (XPCS). Upon increasing the temperature above the lower critical solution temperature of PNIPAm at 33 °C, a colloidal gel is formed as identified by an increase of I(q) at small q as well as a slowing down of sample dynamics by various orders of magnitude. With increasing TMAO concentration the gelation transition shifts linearly to lower temperatures. Above a TMAO concentration of approximately 0.40 mol/L corresponding to a 1 : 1 ratio of TMAO and NIPAm groups, collapsed PNIPAm states are found for all temperatures without any gelation transition. This suggests that reduction of PNIPAm-water hydrogen bonds due to the presence of TMAO results in a stabilisation of the collapsed PNIPAm state and suppresses gelation of the nanogel.

5.
Soft Matter ; 16(11): 2864-2872, 2020 Mar 21.
Article in English | MEDLINE | ID: mdl-32108204

ABSTRACT

We investigate the out-of-equilibrium dynamics of a colloidal gel obtained by quenching a suspension of soft polymer-coated gold nanoparticles close to and below its gelation point using X-ray Photon Correlation Spectroscopy (XPCS). A faster relaxation process emergent from the localized motions of the nanoparticles reveals a dynamically-arrested network at the nanoscale as a key signature of the gelation process. We find that the slower network dynamics is hyperdiffusive with a compressed exponential form, consistent with stress-driven relaxation processes. Specifically, we use direction-dependent correlation functions to characterize the anisotropy in dynamics. We show that the anisotropy is greater for the gel close to its gelation point than at lower temperatures, and the anisotropy decreases as the gel ages. We quantify the anisotropic dynamical heterogeneities emergent in such a stress-driven dynamical system using higher order intensity correlations, and demonstrate that the aging phenomenon contributes significantly to the properties evaluated by the fluctuations in the intensity correlations. Our results provide important insights into the structural origin of the emergent anisotropic and cooperative heterogeneous dynamics, and we discuss analogies with previous work on other soft disordered systems.

6.
Soft Matter ; 16(2): 466-475, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31803889

ABSTRACT

We study the structure and dynamics of aqueous dispersions of densely packed core-shell nanoparticles composed of a silica core and a poly(N-isoproylacrylamide) (PNIPAm) shell as a function of temperature and concentration. With small angle X-ray scattering (SAXS) and X-ray photon correlation spectroscopy (XPCS) we shed light on the structural and dynamical changes of the thermo-responsive colloidal nanogel during its volume phase transition at a lower critical solution temperature (LCST) of 32 °C. A transition of the dynamics and its distinct dependency on the particle number concentration could be determined by analysing the intensity autocorrelation function while the structural transition remains concentration independent. We found the dynamics of a jammed system beyond a critical concentration. In addition, by variation of the PNIPAm shell size we tuned both the effective volume fraction and the underlying nature of the dynamics in the system. With our results we can present a full phase diagram of a PNIPAm core-shell system that spans from diluted suspensions, where the system behaves like a liquid, to an effective volume fraction of more than ninety percent where after exceeding a critical concentration the system undergoes a temperature-induced transition from a liquid towards a colloidal gel.

7.
Phys Chem Chem Phys ; 21(38): 21349-21354, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31531471

ABSTRACT

Colloidal nanocrystals (NC) are known to self-organize into superlattices that promise many applications ranging from medicine to optoelectronics. Recently, the formation of high-quality PEGylated gold NC was reported at high hydrostatic pressure and high salt concentrations. Here, we study the formation kinetics of these superlattices after pressure jumps beyond their crystallisation pressure by means of small-angle X-ray scattering with few ms experimental resolution. The timescale of NC formation was found to be reduced the larger the width of the pressure jump. This is connected to an increase of crystal quality, i.e., the faster the NC superlattice forms, the better the crystal quality. In contrast to the formation kinetics, the melting of the NC superlattice is approximately one order of magnitude slower and shows linear kinetics.

8.
J Phys Chem Lett ; 10(17): 5231-5236, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31433650

ABSTRACT

We present the structure and dynamics of highly concentrated core-shell nanoparticles composed of a silica core and a poly(N-isoproylacrylamide) (PNIPAm) shell suspended in water. With X-ray photon correlation spectroscopy, we are able to follow dynamical changes over the volume phase transition of PNIPAm at LCST = 32 °C. On raising the temperature beyond LCST, the structural relaxation times continue to decrease. The effect is accompanied by a transition from stretched to compressed exponential shape of the intensity autocorrelation function. Upon further heating, we find a sudden slowing down for the particles in their collapsed state. The q dependence of the relaxation time shows an anomalous change from τc ∝ q-3 to τc ∝ q-1. Small angle X-ray scattering data evidence a temperature-induced transition from repulsive to attractive forces. Our results indicate a temperature-induced phase transition from a colloidal liquid with polymer-driven dynamics toward a colloidal gel.

9.
IUCrJ ; 5(Pt 3): 354-360, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29755751

ABSTRACT

We report on the self-assembly of gold nanoparticles coated with a soft poly(ethylene glycol) shell studied by X-ray cross-correlation analysis. Depending on the initial concentration of gold nanoparticles used, structurally heterogeneous films were formed. The films feature hot spots of dominating four- and sixfold local order with patch sizes of a few micrometres, containing 104-105 particles. The amplitude of the order parameters suggested that a minimum sample amount was necessary to form well ordered local structures. Furthermore, the increasing variation in order parameters with sample thickness demonstrated a high degree of structural heterogeneity. This wealth of information cannot be obtained by the conventional microscopy techniques that are commonly used to study nanocrystal superstructures, as illustrated by complementary scanning electron microscopy measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...