Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 613-614: 1376-1384, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29898505

ABSTRACT

Global change effects on biodiversity and human wellbeing call for improved long-term environmental data as a basis for science, policy and decision making, including increased interoperability, multifunctionality, and harmonization. Based on the example of two global initiatives, the International Long-Term Ecological Research (ILTER) network and the Group on Earth Observations Biodiversity Observation Network (GEO BON), we propose merging the frameworks behind these initiatives, namely ecosystem integrity and essential biodiversity variables, to serve as an improved guideline for future site-based long-term research and monitoring in terrestrial, freshwater and coastal ecosystems. We derive a list of specific recommendations of what and how to measure at a monitoring site and call for an integration of sites into co-located site networks across individual monitoring initiatives, and centered on ecosystems. This facilitates the generation of linked comprehensive ecosystem monitoring data, supports synergies in the use of costly infrastructures, fosters cross-initiative research and provides a template for collaboration beyond the ILTER and GEO BON communities.


Subject(s)
Biodiversity , Ecosystem , Environmental Monitoring/methods , Environmental Policy , Decision Making , Environmental Monitoring/statistics & numerical data
2.
Sci Total Environ ; 624: 968-978, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29275260

ABSTRACT

The challenges posed by climate and land use change are increasingly complex, with ever-increasing and accelerating impacts on the global environmental system. The establishment of an internationally harmonized, integrated, and long-term operated environmental monitoring infrastructure is one of the major challenges of modern environmental research. Increased efforts are currently being made in Europe to establish such a harmonized pan-European observation infrastructure, and the European network of Long-Term Ecological Research sites - LTER-Europe - is of particular importance. By evaluating 477 formally accredited LTER-Europe sites, this study gives an overview of the current distribution of these infrastructures and the present condition of long-term environmental research in Europe. We compiled information on long-term biotic and abiotic observations and measurements and examined the representativeness in terms of continental biogeographical and socio-ecological gradients. The results were used to identify gaps in both measurements and coverage of the aforementioned gradients. Furthermore, an overview of the current state of the LTER-Europe observation strategies is given. The latter forms the basis for investigating the comparability of existing LTER-Europe monitoring concepts both in terms of observational design as well as in terms of the scope of the environmental compartments, variables and properties covered.


Subject(s)
Ecology , Environmental Monitoring , Research , Climate , Ecosystem , Europe
3.
PLoS One ; 12(10): e0185591, 2017.
Article in English | MEDLINE | ID: mdl-28973006

ABSTRACT

Assessing species richness and diversity on the basis of standardised field sampling effort represents a cost- and time-consuming method. Satellite remote sensing (RS) can help overcome these limitations because it facilitates the collection of larger amounts of spatial data using cost-effective techniques. RS information is hence increasingly analysed to model biodiversity across space and time. Here, we focus on image texture measures as a proxy for spatial habitat heterogeneity, which has been recognized as an important determinant of species distributions and diversity. Using bee monitoring data of four years (2010-2013) from six 4 × 4 km field sites across Central Germany and a multimodel inference approach we test the ability of texture features derived from Landsat-TM imagery to model local pollinator biodiversity. Textures were shown to reflect patterns of bee diversity and species richness to some extent, with the first-order entropy texture and terrain roughness being the most relevant indicators. However, the texture measurements accounted for only 3-5% of up to 60% of the variability that was explained by our final models, although the results are largely consistent across different species groups (bumble bees, solitary bees). While our findings provide indications in support of the applicability of satellite imagery textures for modeling patterns of bee biodiversity, they are inconsistent with the high predictive power of texture metrics reported in previous studies for avian biodiversity. We assume that our texture data captured mainly heterogeneity resulting from landscape configuration, which might be functionally less important for wild bees than compositional diversity of plant communities. Our study also highlights the substantial variability among taxa in the applicability of texture metrics for modelling biodiversity.


Subject(s)
Biodiversity , Insecta/physiology , Pollination , Remote Sensing Technology , Animals , Ecosystem , Germany , Insecta/classification
4.
Ecol Evol ; 7(11): 3967-3975, 2017 06.
Article in English | MEDLINE | ID: mdl-28616191

ABSTRACT

The study of ecosystem processes over multiple scales of space and time is often best achieved using comparable data from multiple sites. Yet, long-term ecological observatories have often developed their own data collection protocols. Here, we address this problem by proposing a set of ecological protocols suitable for widespread adoption by the ecological community. Scientists from the European ecological research community prioritized terrestrial ecosystem parameters that could benefit from a more consistent approach to data collection within the resources available at most long-term ecological observatories. Parameters for which standard methods are in widespread use, or for which methods are evolving rapidly, were not selected. Protocols were developed by domain experts, building on existing methods where possible, and refined through a process of field testing and training. They address above-ground plant biomass; decomposition; land use and management; leaf area index; soil mesofaunal diversity; soil C and N stocks, and greenhouse gas emissions from soils. These complement existing methods to provide a complete assessment of ecological integrity. These protocols offer integrated approaches to ecological data collection that are low cost and are starting to be used across the European Long Term Ecological Research community.

SELECTION OF CITATIONS
SEARCH DETAIL
...