Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(51): 56753-56766, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33226228

ABSTRACT

Here, we have developed and evaluated a microfluidic-based human blood-brain-barrier (µBBB) platform that models and predicts brain tissue uptake of small molecule drugs and nanoparticles (NPs) targeting the central nervous system. By using a photocrosslinkable copolymer that was prepared from monomers containing benzophenone and N-hydroxysuccinimide ester functional groups, we were able to evenly coat and functionalize µBBB chip channels in situ, providing a covalently attached homogenous layer of extracellular matrix proteins. This novel approach allowed the coculture of human endothelial cells, pericytes, and astrocytes and resulted in the formation of a mimic of cerebral endothelium expressing tight junction markers and efflux proteins, resembling the native BBB. The permeability coefficients of a number of compounds, including caffeine, nitrofurantoin, dextran, sucrose, glucose, and alanine, were measured on our µBBB platform and were found to agree with reported values. In addition, we successfully visualized the receptor-mediated uptake and transcytosis of transferrin-functionalized NPs. The BBB-penetrating NPs were able to target glioma cells cultured in 3D in the brain compartment of our µBBB. In conclusion, our µBBB was able to accurately predict the BBB permeability of both small molecule pharmaceuticals and nanovectors and allowed time-resolved visualization of transcytosis. Our versatile chip design accommodates different brain disease models and is expected to be exploited in further BBB studies, aiming at replacing animal experiments.


Subject(s)
Artificial Organs , Blood-Brain Barrier/metabolism , Lab-On-A-Chip Devices , Nanoparticles/chemistry , Organic Chemicals/analysis , Astrocytes/metabolism , Cells, Cultured , Coculture Techniques , Endothelial Cells/metabolism , Humans , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Pericytes/metabolism , Transferrin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...