Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
ASAIO J ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38833540

ABSTRACT

Impaired primary hemostasis and dysregulated angiogenesis, known as a two-hit hypothesis, are associated with gastrointestinal (GI) bleeding in patients with continuous-flow left ventricular assist devices (CF-LVADs). Exercise is known to influence hemostasis and angiogenesis in healthy individuals; however, little is known about the effect in patients with CF-LVADs. The objective of this prospective observational study was to determine whether acute exercise modulates two-hit hypothesis mediators associated with GI bleeding in patients with a CF-LVAD. Twenty-two patients with CF-LVADs performed acute exercise either on a cycle ergometer for approximately 10 minutes or on a treadmill for 30 minutes. Blood samples were taken pre- and post-exercise to analyze hemostatic and angiogenic biomarkers. Acute exercise resulted in an increased platelet count (p < 0.00001) and platelet function (induced by adenosine diphosphate, p = 0.0087; TRAP-6, p = 0.0005; ristocetin, p = 0.0009). Additionally, high-molecular-weight vWF multimers (p < 0.00001), vWF collagen-binding activity (p = 0.0012), factor VIII (p = 0.034), angiopoietin-1 (p = 0.0026), and vascular endothelial growth factor (p = 0.0041) all increased after acute exercise. This pilot work demonstrates that acute exercise modulated two-hit hypothesis mediators associated with GI bleeding in patients with CF-LVADs.

2.
APL Bioeng ; 8(2): 026114, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812756

ABSTRACT

Cardiovascular medical devices undergo a large number of pre- and post-market tests before their approval for clinical practice use. Sophisticated cardiovascular simulators can significantly expedite the evaluation process by providing a safe and controlled environment and representing clinically relevant case scenarios. The complex nature of the cardiovascular system affected by severe pathologies and the inherently intricate patient-device interaction creates a need for high-fidelity test benches able to reproduce intra- and inter-patient variability of disease states. Therefore, we propose an innovative cardiovascular simulator that combines in silico and in vitro modeling techniques with a soft robotic left ventricle. The simulator leverages patient-specific and echogenic soft robotic phantoms used to recreate the intracardiac pressure and volume waveforms, combined with an in silico lumped parameter model of the remaining cardiovascular system. Three different patient-specific profiles were recreated, to assess the capability of the simulator to represent a variety of working conditions and mechanical properties of the left ventricle. The simulator is shown to provide a realistic physiological and anatomical representation thanks to the use of soft robotics combined with in silico modeling. This tool proves valuable for optimizing and validating medical devices and delineating specific indications and boundary conditions.

3.
Anesthesiology ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558038

ABSTRACT

BACKGROUND: The Hypotension Prediction Index is designed to timely predict intraoperative hypotension and is based on arterial waveform analysis using machine learning. It has recently been suggested that this algorithm is highly correlated with the mean arterial pressure (MAP) itself. Therefore, the aim of this study was to compare the Index with MAP based prediction methods and it is hypothesized that their ability to predict hypotension is comparable. METHODS: In this observational study, the Hypotension Prediction Index was used in addition to routine intraoperative monitoring during moderate- to high-risk elective non-cardiac surgery. The agreement in time between the default Hypotension Prediction Index alarm (>85) and different concurrent MAP thresholds was evaluated. Additionally, the predictive performance of the Index and different MAP based methods were assessed within five, ten and fifteen minutes before hypotension occurred. RESULTS: A total of 100 patients were included. A MAP threshold of 73 mmHg agreed 97% of the time with the default Index alarm, while a MAP threshold of 72 mmHg had the most comparable predictive performance. The areas under the receiver operating characteristic curve of the Hypotension Prediction Index (0.89 (0.88-0.89)) and concurrent MAP (0.88 (0.88-0.89)) were almost identical for predicting hypotension within five minutes, outperforming both linearly extrapolated MAP (0.85 (0.84-0.85)) and delta MAP (0.66 (0.65-0.67)). The positive predictive value was 31.9 (31.3-32.6)% for the default Index alarm and 32.9 (32.2-33.6)% for a MAP threshold of 72 mmHg. CONCLUSION: In clinical practice, the Hypotension Prediction Index alarms are highly similar to those derived from MAP, which implies that the machine learning algorithm could be substituted by an alarm based on a MAP threshold set at 72 or 73 mmHg. Further research on intraoperative hypotension prediction should therefore include comparison with MAP based alarms and related effects on patient outcome.

4.
Perfusion ; 39(1_suppl): 5S-12S, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651580

ABSTRACT

Venoarterial extracorporeal membrane oxygenation (VA ECMO) has become a standard of care for severe cardiogenic shock, refractory cardiac arrest and related impending multiorgan failure. The widespread clinical use of this complex temporary circulatory support modality is still contrasted by a lack of formal scientific evidence in the current literature. This might at least in part be attributable to VA ECMO related complications, which may significantly impact on clinical outcome. In order to limit adverse effects of VA ECMO as much as possible an indepth understanding of the complex physiology during extracorporeally supported cardiogenic shock states is critically important. This review covers all relevant physiological aspects of VA ECMO interacting with the human body in detail. This, to provide a solid basis for health care professionals involved in the daily management of patients supported with VA ECMO and suffering from cardiogenic shock or cardiac arrest and impending multiorgan failure for the best possible care.


Subject(s)
Extracorporeal Membrane Oxygenation , Shock, Cardiogenic , Extracorporeal Membrane Oxygenation/methods , Humans , Shock, Cardiogenic/therapy , Shock, Cardiogenic/physiopathology , Multiple Organ Failure , Heart Arrest/therapy , Heart Arrest/physiopathology
5.
Front Physiol ; 14: 1155032, 2023.
Article in English | MEDLINE | ID: mdl-37560156

ABSTRACT

Introduction: Ventricular assist devices (LVADs) are a valuable therapy for end-stage heart failure patients. However, some adverse events still persist, such as suction that can trigger thrombus formation and cardiac rhythm disorders. The aim of this study is to validate a suction module (SM) as a test bench for LVAD suction detection and speed control algorithms. Methods: The SM consists of a latex tube, mimicking the ventricular apex, connected to a LVAD. The SM was implemented into a hybrid in vitro-in silico cardiovascular simulator. Suction was induced simulating hypovolemia in a profile of a dilated cardiomyopathy and of a restrictive cardiomyopathy for pump speeds ranging between 2,500 and 3,200 rpm. Clinical data collected in 38 LVAD patients were used for the validation. Clinical and simulated LVAD flow waveforms were visually compared. For a more quantitative validation, a binary classifier was used to classify simulated suction and non-suction beats. The obtained classification was then compared to that generated by the simulator to evaluate the specificity and sensitivity of the simulator. Finally, a statistical analysis was run on specific suction features (e.g., minimum impeller speed pulsatility, minimum slope of the estimated flow, and timing of the maximum slope of the estimated flow). Results: The simulator could reproduce most of the pump waveforms observed in vivo. The simulator showed a sensitivity and specificity and of 90.0% and 97.5%, respectively. Simulated suction features were in the interquartile range of clinical ones. Conclusions: The SM can be used to investigate suction in different pathophysiological conditions and to support the development of LVAD physiological controllers.

7.
Perfusion ; 38(1_suppl): 68-81, 2023 05.
Article in English | MEDLINE | ID: mdl-37078916

ABSTRACT

Prognostic modelling techniques have rapidly evolved over the past decade and may greatly benefit patients supported with ExtraCorporeal Membrane Oxygenation (ECMO). Epidemiological and computational physiological approaches aim to provide more accurate predictive assessments of ECMO-related risks and benefits. Implementation of these approaches may produce predictive tools that can improve complex clinical decisions surrounding ECMO allocation and management. This Review describes current applications of prognostic models and elaborates on upcoming directions for their clinical applicability in decision support tools directed at improved allocation and management of ECMO patients. The discussion of these new developments in the field will culminate in a futuristic perspective leaving ourselves and the readers wondering whether we may "fly ECMO by wire" someday.


Subject(s)
Decision Support Systems, Clinical , Extracorporeal Membrane Oxygenation , Extracorporeal Membrane Oxygenation/methods
8.
Sci Rep ; 13(1): 5734, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37059748

ABSTRACT

For those suffering from end-stage biventricular heart failure, and where a heart transplantation is not a viable option, a Total Artificial Heart (TAH) can be used as a bridge to transplant device. The Realheart TAH is a four-chamber artificial heart that uses a positive-displacement pumping technique mimicking the native heart to produce pulsatile flow governed by a pair of bileaflet mechanical heart valves. The aim of this work was to create a method for simulating haemodynamics in positive-displacement blood pumps, using computational fluid dynamics with fluid-structure interaction to eliminate the need for pre-existing in vitro valve motion data, and then use it to investigate the performance of the Realheart TAH across a range of operating conditions. The device was simulated in Ansys Fluent for five cycles at pumping rates of 60, 80, 100 and 120 bpm and at stroke lengths of 19, 21, 23 and 25 mm. The moving components of the device were discretised using an overset meshing approach, a novel blended weak-strong coupling algorithm was used between fluid and structural solvers, and a custom variable time stepping scheme was used to maximise computational efficiency and accuracy. A two-element Windkessel model approximated a physiological pressure response at the outlet. The transient outflow volume flow rate and pressure results were compared against in vitro experiments using a hybrid cardiovascular simulator and showed good agreement, with maximum root mean square errors of 15% and 5% for the flow rates and pressures respectively. Ventricular washout was simulated and showed an increase as cardiac output increased, with a maximum value of 89% after four cycles at 120 bpm 25 mm. Shear stress distribution over time was also measured, showing that no more than [Formula: see text]% of the total volume exceeded 150 Pa at a cardiac output of 7 L/min. This study showed this model to be both accurate and robust across a wide range of operating points, and will enable fast and effective future studies to be undertaken on current and future generations of the Realheart TAH.


Subject(s)
Cardiovascular System , Heart Transplantation , Heart, Artificial , Hemodynamics , Pulsatile Flow , Models, Cardiovascular , Prosthesis Design
9.
J Clin Med ; 12(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36902552

ABSTRACT

High-volume extracorporeal membrane oxygenation (ECMO) centers generally have better outcomes than (new) low-volume ECMO centers, most likely achieved by a suitable exposure to ECMO cases. To achieve a higher level of training, simulation-based training (SBT) offers an additional option for education and extended clinical skills. SBT could also help to improve the interdisciplinary team interactions. However, the level of ECMO simulators and/or simulations (ECMO sims) techniques may vary in purpose. We present a structured and objective classification of ECMO sims based on the broad experience of users and the developer for the available ECMO sims as low-, mid-, or high-fidelity. This classification is based on overall ECMO sim fidelity, established by taking the median of the definition-based fidelity, component fidelity, and customization fidelity as determined by expert opinion. According to this new classification, only low- and mid-fidelity ECMO sims are currently available. This comparison method may be used in the future for the description of new developments in ECMO sims, making it possible for ECMO sim designers, users, and researchers to compare accordingly, and ultimately improve ECMO patient outcomes.

10.
Artif Organs ; 47(2): 260-272, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36370033

ABSTRACT

INTRODUCTION: Mock circulatory loops (MCLs) are mechanical representations of the cardiovascular system largely used to test the hemodynamic performance of cardiovascular medical devices (MD). Thanks to 3 dimensional (3D) printing technologies, MCLs can nowadays also incorporate anatomical models so to offer enhanced testing capabilities. The aim of this review is to provide an overview on MCLs and to discuss the recent developments of 3D anatomical models for cardiovascular MD testing. METHODS: The review first analyses the different techniques to develop 3D anatomical models, in both rigid and compliant materials. In the second section, the state of the art of MCLs with 3D models is discussed, along with the testing of different MDs: implantable blood pumps, heart valves, and imaging techniques. For each class of MD, the MCL is analyzed in terms of: the cardiovascular model embedded, the 3D model implemented (the anatomy represented, the material used, and the activation method), and the testing applications. DISCUSSIONS AND CONCLUSIONS: MCLs serve the purpose of testing cardiovascular MDs in different (patho-)physiological scenarios. The addition of 3D anatomical models enables more realistic connections of the MD with the implantation site and enhances the testing capabilities of the MCL. Current attempts focus on the development of personalized MCLs to test MDs in patient-specific hemodynamic and anatomical scenarios. The main limitation of MCLs is the impossibility to assess the impact of a MD in the long-term and at a biological level, for which animal experiments are still needed.


Subject(s)
Heart Valves , Hemodynamics , Printing, Three-Dimensional , Lung , Models, Anatomic , Models, Cardiovascular
11.
Front Physiol ; 13: 967449, 2022.
Article in English | MEDLINE | ID: mdl-36311247

ABSTRACT

Simulators are expected to assume a prominent role in the process of design-development and testing of cardiovascular medical devices. For this purpose, simulators should capture the complexity of human cardiorespiratory physiology in a realistic way. High fidelity simulations of pathophysiology do not only allow to test the medical device itself, but also to advance practically relevant monitoring and control features while the device acts under realistic conditions. We propose a physiologically controlled cardiorespiratory simulator developed in a mixed in silico-in vitro simulation environment. As inherent to this approach, most of the physiological model complexity is implemented in silico while the in vitro system acts as an interface to connect a medical device. As case scenarios, severe heart failure was modeled, at rest and at exercise and as medical device a left ventricular assist device (LVAD) was connected to the simulator. As initial validation, the simulator output was compared against clinical data from chronic heart failure patients supported by an LVAD, that underwent different levels of exercise tests with concomitant increase in LVAD speed. Simulations were conducted reproducing the same protocol as applied in patients, in terms of exercise intensity and related LVAD speed titration. Results show that the simulator allows to capture the principal parameters of the main adaptative cardiovascular and respiratory processes within the human body occurring from rest to exercise. The simulated functional interaction with the LVAD is comparable to the one clinically observed concerning ventricular unloading, cardiac output, and pump flow. Overall, the proposed simulation system offers a high fidelity in silico-in vitro representation of the human cardiorespiratory pathophysiology. It can be used as a test bench to comprehensively analyze the performance of physically connected medical devices simulating clinically realistic, critical scenarios, thus aiding in the future the development of physiologically responding, patient-adjustable medical devices. Further validation studies will be conducted to assess the performance of the simulator in other pathophysiological conditions.

13.
Artif Organs ; 46(8): 1585-1596, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35231138

ABSTRACT

BACKGROUND: Heart failure is a growing health problem worldwide. Due to the lack of donor hearts there is a need for alternative therapies, such as total artificial hearts (TAHs). The aim of this study is to evaluate the hemodynamic performance of the Realheart® TAH, a new 4-chamber cardiac prosthesis device. METHODS: The Realheart® TAH was connected to a hybrid cardiovascular simulator with inflow connections at the left/right atrium, and outflow connections at the ascending aorta/pulmonary artery. The Realheart® TAH was tested at different pumping rates and stroke volumes. Different systemic resistances (20.0-16.7-13.3-10.0 Wood units), pulmonary resistances (6.7-3.3-1.7 Wood units), and pulmonary/systemic arterial compliances (1.4-0.6 ml/mm Hg) were simulated. Tests were also conducted in static conditions, by imposing predefined values of preload-afterload across the artificial ventricle. RESULTS: The Realheart® TAH allows the operator to finely tune the delivered flow by regulating the pumping rate and stroke volume of the artificial ventricles. For a systemic resistance of 16.7 Wood units, the TAH flow ranges from 2.7 ± 0.1 to 6.9 ± 0.1 L/min. For a pulmonary resistance of 3.3 Wood units, the TAH flow ranges from 3.1 ± 0.0 to 8.2 ± 0.3 L/min. The Realheart® TAH delivered a pulse pressure ranging between ~25 mm Hg and ~50 mm Hg for the tested conditions. CONCLUSIONS: The Realheart® TAH offers great flexibility to adjust the output flow and delivers good pressure pulsatility in the vessels. Low sensitivity of device flow to the pressure drop across it was identified and a new version is under development to counteract this.


Subject(s)
Heart Transplantation , Heart, Artificial , Heart Atria , Hemodynamics , Humans , Tissue Donors
14.
Eur J Cardiothorac Surg ; 62(2)2022 07 11.
Article in English | MEDLINE | ID: mdl-35143640

ABSTRACT

OBJECTIVES: N-terminal pro-brain natriuretic peptide (NT-proBNP) is a widely used biomarker in clinical practice in the context of heart failure. Little is known about the long-term evolution of NT-proBNP levels in left ventricular assist device (LVAD) recipients. Besides this, the potential correlation of NT-proBNP with exercise capacity on the long term after LVAD implantation has not been previously studied. METHODS: We retrospectively analysed 132 single-centre LVAD recipient records (HeartMate II/III; HeartWare; between March 2007 and January 2018; mean follow-up 559 days). Blood samples, 6-min walking test (6MWT) and maximal cardiopulmonary exercise test were performed in a standardized way. RESULTS: Pre-LVAD NT-proBNP levels were increased (9736 ± 1072 ng/l) and dropped significantly after implantation [14 days: 4360 ± 545 ng/l (P < 0.0001), 6 months: 1485 ± 139 ng/l (P < 0.0001)]. Afterwards a steady state was reached during follow-up (after 1 year: 1592 ± 214 ng/l, after 5 years: 1679 ± 311 ng/l). Submaximal exercise capacity significantly improved postoperatively [percentage of the predicted distance walked during the 6MWT 50 ± 2% (0-3 months); 61 ± 2% (3-6 months, P < 0.001)], with a steady state afterwards [66 ± 2% (6-12 months, P = 0.08); 64 ± 3%, P = 0.70 later on]. We found a gradual increment of percentage of the expected peak oxygen consumption postoperatively [44 ± 2% (0-3 months); 49 ± 2% (3-6 months); 52 ± 2% (6-12 months); 53 ± 1% (after 12 months)] with a significant improvement between 0 and 3 months versus after the first year on LVAD. Furthermore, we showed a significant moderate correlation between NT-proBNP levels and results at both the 6MWT (correlation coefficient: -0.31, P < 0.0001) and cardiopulmonary exercise testing (correlation coefficient: -0.28, P < 0.0001). CONCLUSIONS: NT-proBNP decreased on LVAD support. We showed that submaximal (6MWT) and maximal exercise capacity (cardiopulmonary exercise testing) improve after LVAD implantation and demonstrated an inverse correlation of both tests with NT-proBNP levels.


Subject(s)
Heart Failure , Heart-Assist Devices , Biomarkers , Exercise Test/methods , Exercise Tolerance , Humans , Natriuretic Peptide, Brain , Peptide Fragments , Retrospective Studies
15.
Artif Organs ; 46(1): 57-70, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34460941

ABSTRACT

BACKGROUND: Patients with end-stage, biventricular heart failure, and for whom heart transplantation is not an option, may be given a Total Artificial Heart (TAH). The Realheart® is a novel TAH which pumps blood by mimicking the native heart with translation of an atrioventricular plane. The aim of this work was to create a strategy for using Computational Fluid Dynamics (CFD) to simulate haemodynamics in the Realheart®, including motion of the atrioventricular plane and valves. METHODS: The accuracies of four different computational methods for simulating fluid-structure interaction of the prosthetic valves were assessed by comparison of chamber pressures and flow rates with experimental measurements. The four strategies were: prescribed motion of valves opening and closing at the atrioventricular plane extrema; simulation of fluid-structure interaction of both valves; prescribed motion of the mitral valve with simulation of fluid-structure interaction of the aortic valve; motion of both valves prescribed from video analysis of experiments. RESULTS: The most accurate strategy (error in ventricular pressure of 6%, error in flow rate of 5%) used video-prescribed motion. With the Realheart operating at 80 bpm, the power consumption was 1.03 W, maximum shear stress was 15 Pa, and washout of the ventricle chamber after 4 cycles was 87%. CONCLUSIONS: This study, the first CFD analysis of this novel TAH, demonstrates that good agreement between computational and experimental data can be achieved. This method will therefore enable future optimisation of the geometry and motion of the Realheart®.


Subject(s)
Heart, Artificial , Hemodynamics , Hydrodynamics , Computer Simulation , Prosthesis Design , Stress, Mechanical
16.
ASAIO J ; 68(6): 814-821, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34524148

ABSTRACT

Ventricular suction is a common adverse event in ventricular assist device (VAD) patients and can be due to multiple underlying causes. The aim of this study is to analyze the potential of different therapeutic interventions to mitigate suction events induced by different pathophysiological conditions. To do so, a suction module was embedded in a cardiovascular hybrid (hydraulic-computational) simulator reproducing the entire cardiovascular system. An HVAD system (Medtronic) was connected between a compliant ventricular apex and a simulated aorta. Starting from a patient profile with severe dilated cardiomyopathy, four different pathophysiological conditions leading to suction were simulated: hypovolemia (blood volume: -900 ml), right ventricular failure (contractility -70%), hypotension (systemic vascular resistance: 8.3 Wood Units), and tachycardia (heart rate:185 bpm). Different therapeutic interventions such as volume infusion, ventricular contractility increase, vasoconstriction, heart rate increase, and pump speed reduction were simulated. Their effects were compared in terms of general hemodynamics and suction mitigation. Each intervention elicited a different effect on the hemodynamics for every pathophysiological condition. Pump speed reduction mitigated suction but did not ameliorate the hemodynamics. Administering volume and inducing a systemic vasoconstriction were the most efficient interventions in both improving the hemodynamics and mitigating suction. When simulating volume infusion, the cardiac powers increased, respectively, by 38%, 25%, 42%, and 43% in the case of hypovolemia, right ventricular failure, hypotension, and tachycardia. Finally, a management algorithm is proposed to identify a therapeutic intervention suited for the underlying physiologic condition causing suction.


Subject(s)
Heart Failure , Heart-Assist Devices , Hypotension , Heart Failure/etiology , Heart Failure/surgery , Heart-Assist Devices/adverse effects , Hemodynamics , Humans , Hypotension/etiology , Hypovolemia/etiology , Models, Cardiovascular , Suction
17.
ASAIO J ; 67(10): 1125-1133, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34570727

ABSTRACT

Ventricular suction is a frequent adverse event in patients with a ventricular assist device (VAD). This study presents a suction module (SM) embedded in a hybrid (hydraulic-computational) cardiovascular simulator suitable for the testing of VADs and related suction events. The SM consists of a compliant latex tube reproducing a simplified ventricular apex. The SM is connected on one side to a hydraulic chamber of the simulator reproducing the left ventricle, and on the other side to a HeartWare HVAD system. The SM is immersed in a hydraulic chamber with a controllable pressure to occlude the compliant tube and activate suction. Two patient profiles were simulated (dilated cardiomyopathy and heart failure with preserved ejection fraction), and the circulating blood volume was reduced stepwise to obtain different preload levels. For each simulated step, the following data were collected: HVAD flow, ventricular pressure and volume, and pressure at the inflow cannula. Data collected for the two profiles and for decreasing preload levels evidenced suction profiles differing in terms of frequency (intermittent vs. every heart beat), amplitude (partial or complete stoppage of the HVAD flow), and shape. Indeed different HVAD flow patterns were observed for the two patient profiles because of the different mechanical properties of the simulated ventricles. Overall, the HVAD flow patterns showed typical indicators of suctions observed in clinics. Results confirmed that the SM can reproduce suction phenomena with VAD under different pathophysiological conditions. As such, the SM can be used in the future to test VADs and control algorithms aimed at preventing suction phenomena.


Subject(s)
Heart Failure , Heart-Assist Devices , Heart Rate , Heart Ventricles , Heart-Assist Devices/adverse effects , Humans , Suction/adverse effects
18.
Ann Cardiothorac Surg ; 10(3): 339-352, 2021 May.
Article in English | MEDLINE | ID: mdl-34159115

ABSTRACT

Left ventricular assist devices (LVADs) assure longer survival to patients, but exercise capacity is limited compared to normal values. Overall, LVAD patients show high wedge pressure and low cardiac output during maximal exercise, a phenomenon hinting at the need for increased LVAD support. Clinical studies investigating the hemodynamic benefits of an LVAD speed increase during exercise, ended in inhomogeneous and sometimes contradictory results. The native ventricle-LVAD interaction changes between rest and exercise, and this evolution is complex, multifactorial and patient-specific. The aim of this paper is to provide a comprehensive overview on the patient-LVAD interaction during exercise and to delineate possible therapeutic strategies for the future. A computational cardiorespiratory model was used to simulate the hemodynamics of peak bicycle exercise in LVAD patients. The simulator included the main cardiovascular and respiratory impairments commonly observed in LVAD patients, so as to represent an average hemodynamic response to exercise. In addition, other exercise responses were simulated, by tuning the chronotropic, inotropic and vascular functions, and implementing aortic regurgitation and stenosis in the simulator. These profiles were tested under different LVAD speeds and LVAD pressure-flow characteristics. Simulations output showed consistency with clinical data from the literature. The simulator allowed the working condition of the assisted ventricle at exercise to be investigated, clarifying the reasons behind the high wedge pressure and poor cardiac output observed in the clinics. Patients with poorer inotropic, chronotropic and vascular functions, are likely to benefit more from an LVAD speed increase during exercise. Similarly, for these patients, a flatter LVAD pressure-flow characteristic can assure better hemodynamic support under physical exertion. Overall, the study evidenced the need for a patient-specific approach on supporting exercise hemodynamics. In this frame, a complex simulator can constitute a valuable tool to define and test personalized speed control algorithms and strategies.

19.
Artif Organs ; 45(4): 399-410, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33034071

ABSTRACT

In the recent years, the use of extracorporeal membrane oxygenation (ECMO) has grown substantially, posing the need of having specialized medical and paramedical personnel dedicated to it. Optimization of the therapy, definition of new therapeutic strategies, and ECMO interaction with the cardiorespiratory system require numerous specific skills and preclinical models for patient successful management. The aim of the present work is to develop and validate a computational model of ECMO and connect it to an already existing lumped parameter model of the cardiorespiratory system. The ECMO model was connected between the right atrium and the aorta of the cardiorespiratory simulator. It includes a hydraulic module that is a representation of the tubing, oxygenator, and pump. The resulting pressures and flows within the ECMO circuit were compared to the measurements conducted in vitro on a real ECMO. Additionally, the hemodynamic effects the ECMO model elicited on the cardiorespiratory simulator were compared with experimental data taken from the literature. The comparison between the hydraulic module and the in vitro measurements evidenced a good agreement in terms of flow, pressure drops across the pump, across the oxygenator and the tubing (maximal percentage error recorded was 17.6%). The hemodynamic effects of the ECMO model on the cardiovascular system were in agreement with what observed experimentally in terms of cardiac output, systemic pressure, pulmonary arterial pressure, and left atrial pressure. The ECMO model we developed and embedded into the cardiorespiratory simulator, is a useful tool for the investigation of basic physiological mechanisms and principles of ECMO therapy. The model was sided by a user interface dedicated to training applications. As such, the resulting simulator can be used for the education of students, medical and paramedical personnel.


Subject(s)
Extracorporeal Membrane Oxygenation/methods , Models, Cardiovascular , Computer Simulation , Equipment Design , Humans , In Vitro Techniques
20.
PLoS One ; 15(7): e0235684, 2020.
Article in English | MEDLINE | ID: mdl-32645710

ABSTRACT

AIMS: Although patients supported with a Continuous-Flow Left Ventricular Assist Device (CF-LVAD) are hemodynamically stable, their exercise capacity is limited. Hence, the aim of this work was to investigate the underlying factors that lead to peak and submaximal exercise intolerance of CF-LVAD supported patients. METHODS: Seven months after CF-LVAD implantation, eighty three patients performed a maximal cardiopulmonary exercise test and a six minute walk test. Peak oxygen uptake and the distance walked were measured and expressed as a percentage of the predicted value (%VO2p and %6MWD, respectively). Preoperative conditions, echocardiography, laboratory results and pharmacological therapy data were collected and a correlation analysis against %VO2p and %6MWD was performed. RESULTS: CF-LVAD patients showed a relatively higher submaximal exercise capacity (%6MWD = 64±16%) compared to their peak exertion (%VO2p = 51±14%). The variables that correlated with %VO2p were CF-LVAD parameters, chronotropic response, opening of the aortic valve at rest, tricuspid insufficiency, NT-proBNP and the presence of a cardiac implantable electronic device. On the other hand, the variables that correlated with %6MWD were diabetes, creatinine, urea, ventilation efficiency and CF-LVAD pulsatility index. Additionally, both %6MWD and %VO2p were influenced by the CF-LVAD implantation timing, calculated from the occurrence of the cardiac disease. CONCLUSION: Overall, both %6MWD and %VO2p depend on the duration of heart failure prior to CF-LVAD implantation. %6MWD is primarily determined by parameters underlying the patient's general condition, while %VO2p mostly relies on the residual function and chronotropic response of the heart. Moreover, since %VO2p was relatively lower compared to %6MWD, we might infer that CF-LVAD can support submaximal exercise but is not sufficient during peak exertion. Hence concluding that the contribution of the ventricle is crucial in sustaining hemodynamics at peak exercise.


Subject(s)
Exercise Tolerance/physiology , Heart Failure/physiopathology , Heart-Assist Devices/adverse effects , Adult , Aged , Echocardiography , Exercise/physiology , Exercise Test , Female , Heart Failure/surgery , Heart Ventricles/physiopathology , Hemodynamics/physiology , Humans , Male , Middle Aged , Oxygen Consumption , Ventricular Function, Left/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...