Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(13)2022 07 02.
Article in English | MEDLINE | ID: mdl-35805182

ABSTRACT

BACKGROUND: Progressive retinal ganglion cell (RGC) dysfunction and death are common characteristics of retinal neurodegenerative diseases. Recently, hydroxycarboxylic acid receptor 1 (HCA1R, GPR81) was identified as a key modulator of mitochondrial function and cell survival. Thus, we aimed to test whether activation of HCA1R with 3,5-Dihydroxybenzoic acid (DHBA) also promotes RGC survival and improves energy metabolism in mouse retinas. METHODS: Retinal explants were treated with 5 mM of the HCA1R agonist, 3,5-DHBA, for 2, 4, 24, and 72 h. Additionally, explants were also treated with 15 mM of L-glutamate to induce toxicity. Tissue survival was assessed through lactate dehydrogenase (LDH) viability assays. RGC survival was measured through immunohistochemical (IHC) staining. Total ATP levels were quantified through bioluminescence assays. Energy metabolism was investigated through stable isotope labeling and gas chromatography-mass spectrometry (GC-MS). Lactate and nitric oxide levels were measured through colorimetric assays. RESULTS: HCA1R activation with 3,5-DHBAincreased retinal explant survival. During glutamate-induced death, 3,5-DHBA treatment also increased survival. IHC analysis revealed that 3,5-DHBA treatment promoted RGC survival in retinal wholemounts. 3,5-DHBA treatment also enhanced ATP levels in retinal explants, whereas lactate levels decreased. No effects on glucose metabolism were observed, but small changes in lactate metabolism were found. Nitric oxide levels remained unaltered in response to 3,5-DHBA treatment. CONCLUSION: The present study reveals that activation of HCA1R with 3,5-DHBA treatment has a neuroprotective effect specifically on RGCs and on glutamate-induced retinal degeneration. Hence, HCA1R agonist administration may be a potential new strategy for rescuing RGCs, ultimately preventing visual disability.


Subject(s)
Nitric Oxide , Retinal Degeneration , Adenosine Triphosphate , Animals , Cell Death , Glutamic Acid , Lactic Acid/metabolism , Mice , Receptors, G-Protein-Coupled/agonists
2.
Cell Mol Neurobiol ; 42(1): 291-303, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34259962

ABSTRACT

Visual changes are some of the earliest symptoms that patients with Alzheimer's disease (AD) experience. Pathophysiological processes such as amyloid-ß plaque formation, vascular changes, neuroinflammation, and loss of retinal ganglion cells (RGCs) have been detected in the retina of AD patients and animal models. However, little is known about the molecular processes that underlie retinal neurodegeneration in AD. The cellular architecture and constant sensory activity of the retina impose high metabolic demands. We thus hypothesized that energy metabolism might be compromised in the AD retina similarly to what has been observed in the AD brain. To address this question, we explored cellular alterations and retinal metabolic activity in the 5 × FAD mouse model of AD. We used 8-month-old female 5 × FAD mice, in which the AD-related pathology has been shown to be apparent. We observed that RGC density is selectively affected in the retina of 5 × FAD mice. To map retinal metabolic activity, we incubated isolated retinal tissue with [U-13C] glucose and analyzed tissue extracts by gas chromatography-mass spectrometry. We found that the retinas of 5 × FAD mice exhibit glucose hypometabolism. Moreover, we detected decreased glutamine synthesis in 5 × FAD retinas but no changes in the expression of markers of Müller glia, the main glial cell type responsible for glutamate uptake and glutamine synthesis in the retina. These findings suggest that AD presents with metabolic alterations not only in the brain but also in the retina that may be detrimental to RGC activity and survival, potentially leading to the visual impairments that AD patients suffer.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Female , Glucose/metabolism , Glutamine/metabolism , Humans , Mice , Mice, Transgenic , Retina/metabolism
3.
Antioxidants (Basel) ; 10(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34679672

ABSTRACT

Increasing evidence indicates that changes in the redox system may contribute to the pathogenesis of multiple optic neuropathies. Optic neuropathies are characterized by the neurodegeneration of the inner-most retinal neurons, the retinal ganglion cells (RGCs), and their axons, which form the optic nerve. Often, optic neuropathies are asymptomatic until advanced stages, when visual impairment or blindness is unavoidable despite existing treatments. In this review, we describe systemic and, whenever possible, ocular redox dysregulations observed in patients with glaucoma, ischemic optic neuropathy, optic neuritis, hereditary optic neuropathies (i.e., Leber's hereditary optic neuropathy and autosomal dominant optic atrophy), nutritional and toxic optic neuropathies, and optic disc drusen. We discuss aspects related to anti/oxidative stress biomarkers that need further investigation and features related to study design that should be optimized to generate more valuable and comparable results. Understanding the role of oxidative stress in optic neuropathies can serve to develop therapeutic strategies directed at the redox system to arrest the neurodegenerative processes in the retina and RGCs and ultimately prevent vision loss.

4.
World J Stem Cells ; 12(10): 1171-1183, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33178399

ABSTRACT

BACKGROUND: Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients. They permit the isolation of key cell types affected in various eye diseases including retinal ganglion cells (RGCs) and Müller glia. AIM: To refine human-induced pluripotent stem cells (hiPSCs) differentiated into three-dimensional (3D) retinal organoids to generate sufficient numbers of RGCs and Müller glia progenitors for downstream analyses. METHODS: In this study we described, evaluated, and refined methods with which to generate Müller glia and RGC progenitors, isolated them via magnetic-activated cell sorting, and assessed their lineage stability after prolonged 2D culture. Putative progenitor populations were characterized via quantitative PCR and immunocytochemistry, and the ultrastructural composition of retinal organoid cells was investigated. RESULTS: Our study confirms the feasibility of generating marker-characterized Müller glia and RGC progenitors within retinal organoids. Such retinal organoids can be dissociated and the Müller glia and RGC progenitor-like cells isolated via magnetic-activated cell sorting and propagated as monolayers. CONCLUSION: Enrichment of Müller glia and RGC progenitors from retinal organoids is a feasible method with which to study cell type-specific disease phenotypes and to potentially generate specific retinal populations for cell replacement therapies.

5.
J Tissue Eng Regen Med ; 14(12): 1880-1891, 2020 12.
Article in English | MEDLINE | ID: mdl-33049106

ABSTRACT

In this study, porcine embryonic fibroblasts (pEFs) were reprogrammed into porcine-induced pluripotent stem cells (piPSCs) using either human or mouse specific sequences for the OCT4, SOX2, c-Myc, and KLF4 transcription factors. In total, three pEFs lines were reprogrammed, cultured for at least 15 passages, and characterized regarding their pluripotency status (alkaline phosphatase expression, embryoid body formation, expression of exogenous and endogenous genes, and immunofluorescence). Two piPSC lines were further differentiated, using chemical inhibitors, into putative neural progenitor-like (NPC-like) cells with subsequent analyses of their morphology and expression of neural markers such as NESTIN and GFAP as well as immunofluorescent labeling of NESTIN, ß-TUBULIN III, and VIMENTIN. NPC-like cells were positive for all the neural markers tested. These results evidence of the generation of porcine NPC-like cells after in vitro induction with chemical inhibitors, representing an adequate model for future regenerative and translational medicine research.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Alkaline Phosphatase/metabolism , Animals , Biomarkers/metabolism , Cell Differentiation/genetics , Cell Line , Cell Shape , Cellular Reprogramming , Embryoid Bodies/cytology , Gene Expression Regulation , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Neural Stem Cells/metabolism , Neurons/cytology , Swine
6.
World J Stem Cells ; 11(8): 491-505, 2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31523369

ABSTRACT

Up until the mid 2000s, the capacity to generate every cell of an organism was exclusive to embryonic stem cells. In 2006, researchers Takahashi and Yamanaka developed an alternative method of generating embryonic-like stem cells from adult cells, which they coined induced pluripotent stem cells (iPSCs). Such iPSCs possess most of the advantages of embryonic stem cells without the ethical stigma associated with derivation of the latter. The possibility of generating "custom-made" pluripotent cells, ideal for patient-specific disease models, alongside their possible applications in regenerative medicine and reproduction, has drawn a lot of attention to the field with numbers of iPSC studies published growing exponentially. IPSCs have now been generated for a wide variety of species, including but not limited to, mouse, human, primate, wild felines, bovines, equines, birds and rodents, some of which still lack well-established embryonic stem cell lines. The paucity of robust characterization of some of these iPSC lines as well as the residual expression of transgenes involved in the reprogramming process still hampers the use of such cells in species preservation or medical research, underscoring the requirement for further investigations. Here, we provide an extensive overview of iPSC generated from a broad range of animal species including their potential applications and limitations.

7.
Cell Reprogram ; 19(3): 189-198, 2017 06.
Article in English | MEDLINE | ID: mdl-28557624

ABSTRACT

Specific activation of endogenous genes can be achieved by programmable artificial transcription factors (ATFs). In this study, we compared two artificial, programmable, clustered regularly interspaced short palindromic repeats (CRISPR)-based, ubiquitous transcription factors: deficient CRISPR-associated protein 9 (dCas9)-VP64 (CRISPRa) alone, or a combination of dCas9-VP64 and MS2-P65-HSF1 [synergistic activation mediator (SAM) system] mediated activation of five pluripotency genes: KLF4 (K), LIN28 (L), MYC (M), OCT4 (O), and SOX2 (S) in human cells (HEK293T, HeLa, HepG2, and primary fibroblasts). Activation potential was monitored using a luciferase reporter system and we found that both CRISPRa and SAM can efficiently activate the proximal promoter of all five genes. We also observed that the guide RNA (gRNA) target sites and number of gRNAs have a major effect on gRNA-guided activation efficiency. Furthermore, increased activation efficiency (>3-folds) could be achieved by the SAM system compared to CRISPRa. In addition, we discovered that only the SAM system could efficiently activate LIN28, OCT4, and SOX2 expression (up to 100-folds compared to coexpression with a scrambled gRNA) in primary human fibroblasts. This SAM-mediated activation of LOS can be stably maintained for over 20 days in fibroblasts cultured in either fibroblasts or stem cell medium. However, when attempting to use the SAM-LOS activation as an approach for induced pluripotent stem cells-reprogramming, no embryonic stem-like colonies could be obtained from these SAM fibroblasts. In conclusion, our study showed that CRISPR/Cas9-based ATFs are potent to activate and maintain transcription of endogenous human pluripotent genes. However, future improvements of the system are still required to improve activation efficiency and cellular reprogramming using ATFs.


Subject(s)
CRISPR-Cas Systems , Cellular Reprogramming Techniques , Fibroblasts/metabolism , Octamer Transcription Factor-3 , Pluripotent Stem Cells/metabolism , RNA-Binding Proteins , SOXB1 Transcription Factors , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Kruppel-Like Factor 4 , Octamer Transcription Factor-3/biosynthesis , Octamer Transcription Factor-3/genetics , RNA , RNA-Binding Proteins/biosynthesis , RNA-Binding Proteins/genetics , SOXB1 Transcription Factors/biosynthesis , SOXB1 Transcription Factors/genetics
8.
Stem Cell Res ; 17(3): 665-669, 2016 11.
Article in English | MEDLINE | ID: mdl-27934604

ABSTRACT

Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4 and C-MYC. We have validated that the reprogramming cassette is silenced in the SAM iPSC clones. Expression of pluripotency genes (OCT4, SOX2, LIN28A, NANOG, GDF3, SSEA4, and TRA-1-60), differentiation potential to all three germ layers, and normal karyotypes are validated. These SAM-iPSCs provide a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Induced Pluripotent Stem Cells/cytology , Cell Differentiation , Cell Line , Cellular Reprogramming , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Female , Fibroblasts/cytology , Genetic Vectors/genetics , Genetic Vectors/metabolism , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Karyotype , Kruppel-Like Factor 4 , Lentivirus/genetics , Microscopy, Fluorescence , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...