Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 38(Suppl_2): ii5-ii12, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36124808

ABSTRACT

MOTIVATION: Genome-wide association studies (GWAS) are an integral tool for studying the architecture of complex genotype and phenotype relationships. Linear mixed models (LMMs) are commonly used to detect associations between genetic markers and a trait of interest, while at the same time allowing to account for population structure and cryptic relatedness. Assumptions of LMMs include a normal distribution of the residuals and that the genetic markers are independent and identically distributed-both assumptions are often violated in real data. Permutation-based methods can help to overcome some of these limitations and provide more realistic thresholds for the discovery of true associations. Still, in practice, they are rarely implemented due to the high computational complexity. RESULTS: We propose permGWAS, an efficient LMM reformulation based on 4D tensors that can provide permutation-based significance thresholds. We show that our method outperforms current state-of-the-art LMMs with respect to runtime and that permutation-based thresholds have lower false discovery rates for skewed phenotypes compared to the commonly used Bonferroni threshold. Furthermore, using permGWAS we re-analyzed more than 500 Arabidopsis thaliana phenotypes with 100 permutations each in less than 8 days on a single GPU. Our re-analyses suggest that applying a permutation-based threshold can improve and refine the interpretation of GWAS results. AVAILABILITY AND IMPLEMENTATION: permGWAS is open-source and publicly available on GitHub for download: https://github.com/grimmlab/permGWAS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome-Wide Association Study , Genetic Markers , Genome-Wide Association Study/methods , Genotype , Linear Models , Phenotype
2.
Front Genet ; 11: 561497, 2020.
Article in English | MEDLINE | ID: mdl-33281867

ABSTRACT

The prediction of breeding values and phenotypes is of central importance for both livestock and crop breeding. In this study, we analyze the use of artificial neural networks (ANN) and, in particular, local convolutional neural networks (LCNN) for genomic prediction, as a region-specific filter corresponds much better with our prior genetic knowledge on the genetic architecture of traits than traditional convolutional neural networks. Model performances are evaluated on a simulated maize data panel (n = 10,000; p = 34,595) and real Arabidopsis data (n = 2,039; p = 180,000) for a variety of traits based on their predictive ability. The baseline LCNN, containing one local convolutional layer (kernel size: 10) and two fully connected layers with 64 nodes each, is outperforming commonly proposed ANNs (multi layer perceptrons and convolutional neural networks) for basically all considered traits. For traits with high heritability and large training population as present in the simulated data, LCNN are even outperforming state-of-the-art methods like genomic best linear unbiased prediction (GBLUP), Bayesian models and extended GBLUP, indicated by an increase in predictive ability of up to 24%. However, for small training populations, these state-of-the-art methods outperform all considered ANNs. Nevertheless, the LCNN still outperforms all other considered ANNs by around 10%. Minor improvements to the tested baseline network architecture of the LCNN were obtained by increasing the kernel size and of reducing the stride, whereas the number of subsequent fully connected layers and their node sizes had neglectable impact. Although gains in predictive ability were obtained for large scale data sets by using LCNNs, the practical use of ANNs comes with additional problems, such as the need of genotyping all considered individuals, the lack of estimation of heritability and reliability. Furthermore, breeding values are additive by design, whereas ANN-based estimates are not. However, ANNs also comes with new opportunities, as networks can easily be extended to account for additional inputs (omics, weather etc.) and outputs (multi-trait models), and computing time increases linearly with the number of individuals. With advances in high-throughput phenotyping and cheaper genotyping, ANNs can become a valid alternative for genomic prediction.

3.
Genome Biol ; 21(1): 254, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32988404

ABSTRACT

BACKGROUND: Chloroplasts are intracellular organelles that enable plants to conduct photosynthesis. They arose through the symbiotic integration of a prokaryotic cell into an eukaryotic host cell and still contain their own genomes with distinct genomic information. Plastid genomes accommodate essential genes and are regularly utilized in biotechnology or phylogenetics. Different assemblers that are able to assess the plastid genome have been developed. These assemblers often use data of whole genome sequencing experiments, which usually contain reads from the complete chloroplast genome. RESULTS: The performance of different assembly tools has never been systematically compared. Here, we present a benchmark of seven chloroplast assembly tools, capable of succeeding in more than 60% of known real data sets. Our results show significant differences between the tested assemblers in terms of generating whole chloroplast genome sequences and computational requirements. The examination of 105 data sets from species with unknown plastid genomes leads to the assembly of 20 novel chloroplast genomes. CONCLUSIONS: We create docker images for each tested tool that are freely available for the scientific community and ensure reproducibility of the analyses. These containers allow the analysis and screening of data sets for chloroplast genomes using standard computational infrastructure. Thus, large scale screening for chloroplasts within genomic sequencing data is feasible.


Subject(s)
Genome, Chloroplast , Genomics/methods
4.
G3 (Bethesda) ; 10(9): 3137-3145, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32709618

ABSTRACT

Genomic selection uses whole-genome marker models to predict phenotypes or genetic values for complex traits. Some of these models fit interaction terms between markers, and are therefore called epistatic. The biological interpretation of the corresponding fitted effects is not straightforward and there is the threat of overinterpreting their functional meaning. Here we show that the predictive ability of epistatic models relative to additive models can change with the density of the marker panel. In more detail, we show that for publicly available Arabidopsis and rice datasets, an initial superiority of epistatic models over additive models, which can be observed at a lower marker density, vanishes when the number of markers increases. We relate these observations to earlier results reported in the context of association studies which showed that detecting statistical epistatic effects may not only be related to interactions in the underlying genetic architecture, but also to incomplete linkage disequilibrium at low marker density ("Phantom Epistasis"). Finally, we illustrate in a simulation study that due to phantom epistasis, epistatic models may also predict the genetic value of an underlying purely additive genetic architecture better than additive models, when the marker density is low. Our observations can encourage the use of genomic epistatic models with low density panels, and discourage their biological over-interpretation.


Subject(s)
Epistasis, Genetic , Models, Genetic , Genome , Genomics , Linkage Disequilibrium
5.
Nucleic Acids Res ; 48(D1): D1063-D1068, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31642487

ABSTRACT

Genome-wide association studies (GWAS) are integral for studying genotype-phenotype relationships and gaining a deeper understanding of the genetic architecture underlying trait variation. A plethora of genetic associations between distinct loci and various traits have been successfully discovered and published for the model plant Arabidopsis thaliana. This success and the free availability of full genomes and phenotypic data for more than 1,000 different natural inbred lines led to the development of several data repositories. AraPheno (https://arapheno.1001genomes.org) serves as a central repository of population-scale phenotypes in A. thaliana, while the AraGWAS Catalog (https://aragwas.1001genomes.org) provides a publicly available, manually curated and standardized collection of marker-trait associations for all available phenotypes from AraPheno. In this major update, we introduce the next generation of both platforms, including new data, features and tools. We included novel results on associations between knockout-mutations and all AraPheno traits. Furthermore, AraPheno has been extended to display RNA-Seq data for hundreds of accessions, providing expression information for over 28 000 genes for these accessions. All data, including the imputed genotype matrix used for GWAS, are easily downloadable via the respective databases.


Subject(s)
Arabidopsis/genetics , Computational Biology , Databases, Genetic , Genome, Plant , Genome-Wide Association Study , Phenotype , Computational Biology/methods , Gene Knockout Techniques , Genome-Wide Association Study/methods , Genotype , Mutation , Quantitative Trait Loci , Quantitative Trait, Heritable , Sequence Analysis, RNA , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...