Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sleep Med Rev ; 47: 28-38, 2019 10.
Article in English | MEDLINE | ID: mdl-31252334

ABSTRACT

An ever-growing number of electromagnetic (EM) emission sources elicits health concerns, particularly stemming from the ubiquitous low to extremely low frequency fields from power lines and appliances, and the radiofrequency fields emitted from telecommunication devices. In this article we review the state of knowledge regarding possible impacts of electromagnetic fields on melatonin secretion and on sleep structure and the electroencephalogram of humans. Most of the studies on the effects of melatonin on humans have been conducted in the presence of EM fields, focusing on the effects of occupational or residential exposures. While some of the earlier studies indicated that EM fields may have a suppressive effect on melatonin, the results cannot be generalized because of the large variability in exposure conditions and other factors that may influence melatonin. For instance, exposure to radiofrequency EM fields on sleep architecture show little or no effect. However, a number of studies show that pulsating radiofrequency electromagnetic fields, such as those emitted from cellular phones, can alter brain physiology, increasing the electroencephalogram power in selective bands when administered immediately prior to or during sleep. Additional research is necessary that would include older populations and evaluate the interactions of EM fields in different frequency ranges to examine their effects on sleep in humans.


Subject(s)
Electromagnetic Fields , Sleep/radiation effects , Electroencephalography , Humans , Magnetic Field Therapy , Sleep/physiology , Sleep Wake Disorders/therapy
2.
J Phys Chem B ; 119(52): 15892-900, 2015 Dec 31.
Article in English | MEDLINE | ID: mdl-26643863

ABSTRACT

We have measured the quasi-elastic neutron scattering (QENS) of an electrohydrodynamic liquid bridge formed between two beakers of pure water when a high voltage is applied, a setup allowing to investigate water under high-voltage without high currents. From this experiment two proton populations were distinguished: one consisting of protons strongly bound to oxygen atoms (immobile population, elastic component) and a second one of quasi-free protons (mobile population, inelastic component) both detected by QENS. The diffusion coefficient of the quasi-free protons was found to be D = (26 ± 10) × 10(-5) cm(2) s(-1) with a jump length lav ∼ 3 Å and an average residence time of τ0 = 0.55 ± 0.08 ps. The associated proton mobility in the proton channel of the bridge is ∼9.34 × 10(-7) m(2) V(-1) s(-1), twice as fast as diffusion-based proton mobility in bulk water. It also matches the so-called electrohydrodynamic or "apparent" charge mobility, an experimental quantity which so far has lacked molecular interpretation. These results further corroborate the proton channel model for liquid water under high voltage and give new insights into the molecular mechanisms behind electrohydrodynamic charge transport phenomena and delocalization of protons in liquid water.

3.
Int J Environ Res Public Health ; 8(6): 1936-56, 2011 06.
Article in English | MEDLINE | ID: mdl-21776211

ABSTRACT

Prior to major earthquakes many changes in the environment have been documented. Though often subtle and fleeting, these changes are noticeable at the land surface, in water, in the air, and in the ionosphere. Key to understanding these diverse pre-earthquake phenomena has been the discovery that, when tectonic stresses build up in the Earth's crust, highly mobile electronic charge carriers are activated. These charge carriers are defect electrons on the oxygen anion sublattice of silicate minerals, known as positive holes, chemically equivalent to O- in a matrix of O2-. They are remarkable inasmuch as they can flow out of the stressed rock volume and spread into the surrounding unstressed rocks. Travelling fast and far the positive holes cause a range of follow-on reactions when they arrive at the Earth's surface, where they cause air ionization, injecting massive amounts of primarily positive air ions into the lower atmosphere. When they arrive at the rock-water interface, they act as •O radicals, oxidizing water to hydrogen peroxide. Other reactions at the rock-water interface include the oxidation or partial oxidation of dissolved organic compounds, leading to changes of their fluorescence spectra. Some compounds thus formed may be irritants or toxins to certain species of animals. Common toads, Bufo bufo, were observed to exhibit a highly unusual behavior prior to a M6.3 earthquake that hit L'Aquila, Italy, on April 06, 2009: a few days before the seismic event the toads suddenly disappeared from their breeding site in a small lake about 75 km from the epicenter and did not return until after the aftershock series. In this paper we discuss potential changes in groundwater chemistry prior to seismic events and their possible effects on animals.


Subject(s)
Behavior, Animal , Earthquakes , Groundwater/chemistry , Animals , Forecasting
SELECTION OF CITATIONS
SEARCH DETAIL
...