Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Cell Res ; 342(2): 145-58, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26968636

ABSTRACT

Although chemical inhibition of the DNA damage response (DDR) in cancer cells triggers cell death, it is not clear if the fork blockade achieved with inhibitors that neutralise proteins of the replisome is sufficient on its own to overcome the DDR. Monoclonal antibodies to PCNA, which block the DNA elongation process in vitro, have been developed. When these antibodies were transduced into cancer cells, they are able to inhibit the incorporation of nucleoside analogues. When co-delivered with anti-PCNA siRNA, the cells were flattened and the size of their nuclei increased by up to 3-fold, prior to cell death. Analysis of these nuclei by super-resolution microscopy revealed the presence of large numbers of phosphorylated histone H2AX foci. A senescence-like phenotype of the transduced cells was also observed upon delivery of the corresponding Fab molecules or following PCNA gene disruption or when the Fab fragment of an antibody that neutralises DNA polymerase alpha was used. Primary melanoma cells and leukaemia cells that are resistant to chemical inhibitors were similarly affected by these antibody treatments. These results demonstrate that transduced antibodies can trigger a lethal DNA replication stress, which kills cancer cells by abolishing the biological activity of several constituents of the replisome.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/pharmacology , Antineoplastic Agents/pharmacology , DNA Replication/drug effects , DNA, Neoplasm/genetics , Animals , DNA Breaks, Double-Stranded , DNA Polymerase III/antagonists & inhibitors , DNA, Neoplasm/metabolism , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Gene Knockdown Techniques , HeLa Cells , Histones/metabolism , Humans , Immunoglobulin Fab Fragments/pharmacology , Mice, Inbred BALB C , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/immunology , Proliferating Cell Nuclear Antigen/metabolism , Stress, Physiological
2.
J Mol Recognit ; 27(9): 549-58, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25042709

ABSTRACT

Intrabodies, when expressed in cells after genetic fusion to fluorescent proteins, are powerful tools to study endogenous protein dynamics inside cells. However, it remains challenging to determine the conditions for specific imaging and precise labelling of the target antigen with such intracellularly expressed antibody fragments. Here, we show that single-chain Fv (scFv) antibody fragments can be generated that specifically recognize proliferating cell nuclear antigen (PCNA) when expressed in living cancer cells. After selection by phage display, the anti-PCNA scFvs were screened in vitro after being tagged with dimeric glutathione-S-transferase. Anti-PCNA scFvs of increased avidity were further engineered by mutagenesis with sodium bisulfite and error-prone PCR, such that they were almost equivalent to conventional antibodies in in vitro assays. These intrabodies were then rendered bifunctional by fusion to a C-terminal fragment of p21 protein and could thereby readily detect PCNA bound to chromatin in cells. Finally, by linking these optimized peptide-conjugated scFvs to an enhanced green fluorescent protein, fluorescent intrabody-based reagents were obtained that allowed the fate of PCNA in living cells to be examined. The approach described may be applicable to other scFvs that can be solubly expressed in cells, and it provides a unique means to recognize endogenous proteins in living cells with high accuracy.


Subject(s)
Diagnostic Imaging , Neoplasms/diagnosis , Proliferating Cell Nuclear Antigen/metabolism , Amino Acid Sequence , Antibody Affinity , Cell Line, Tumor , Cell Survival , Fluorescence , Humans , Indicators and Reagents , Molecular Sequence Data , Peptide Library , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/immunology , Subcellular Fractions/metabolism
3.
MAbs ; 5(4): 518-22, 2013.
Article in English | MEDLINE | ID: mdl-23765067

ABSTRACT

Antibodies are valuable tools for functional studies in vitro, but their use in living cells remains challenging because they do not naturally cross the cell membrane. Here, we present a simple and highly efficient method for the intracytoplasmic delivery of any antibody into cultured cells. By following the fate of monoclonal antibodies that bind to nuclear antigens, it was possible to image endogenous targets and to show that inhibitory antibodies are able to induce cell growth suppression or cell death. Our electrotransfer system allowed the cancer cells we studied to be transduced without loss of viability and may have applications for a variety of intracellular immuno-interventions.


Subject(s)
Antibodies, Monoclonal, Murine-Derived , Antigens, Nuclear , Apoptosis , Neoplasms , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/immunology , Antibodies, Monoclonal, Murine-Derived/pharmacology , Antigens, Nuclear/chemistry , Antigens, Nuclear/immunology , Antigens, Nuclear/metabolism , Apoptosis/drug effects , Apoptosis/immunology , Cell Death/drug effects , HeLa Cells , Humans , Neoplasms/chemistry , Neoplasms/immunology , Neoplasms/metabolism
4.
Exp Cell Res ; 319(6): 838-49, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23353833

ABSTRACT

Expression of antibody fragments in mammalian cells (intrabodies) is used to probe the target protein or interfere with its biological function. We previously described the in vitro characterisation of a single-chain Fv (scFv) antibody fragment (F5) isolated from an intrabody library that binds to the oncoprotein gankyrin (GK) in solution. Here, we have isolated several other scFvs that interact with GK in the presence of F5 and tested whether they allow, when fused to fluorescent proteins, to detect by FRET endogenous GK in living cells. The binding of pairs of scFvs to GK was analysed by gel filtration and the ability of each scFv to mediate nuclear import/export of GK was determined. Binding between scFv-EGFP and RFP-labelled GK in living cells was detected by fluorescence lifetime imaging microscopy (FLIM). After co-transfection of two scFvs fused to EGFP and RFP, respectively, which form a tri-molecular complex with GK in vitro, FRET signal was measured. This system allowed us to observe that GK is monomeric and distributed throughout the cytoplasm and nucleus of several cancer cell lines. Our results show that pairs of fluorescently labelled intrabodies can be monitored by FLIM-FRET microscopy and that this technique allows the detection of lowly expressed endogenous proteins in single living cells.


Subject(s)
Cell Nucleus/chemistry , Cytoplasm/chemistry , Fluorescent Dyes/chemistry , Proteasome Endopeptidase Complex/chemistry , Proto-Oncogene Proteins/chemistry , Single-Chain Antibodies/chemistry , Active Transport, Cell Nucleus , Biomarkers, Tumor/analysis , Biomarkers, Tumor/chemistry , Chromatography, Gel , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins/chemistry , HeLa Cells , Humans , Immunoglobulin Variable Region/chemistry , Microscopy, Fluorescence , Multiprotein Complexes/chemistry , Neoplasms/chemistry , Neoplasms/diagnosis , Plasmids/chemistry , Protein Binding , Protein Interaction Mapping , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...