Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters










Publication year range
2.
PLoS Biol ; 22(3): e3002539, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38470935

ABSTRACT

GABAergic inhibitory neurons fundamentally shape the activity and plasticity of cortical circuits. A major subset of these neurons contains somatostatin (SOM); these cells play crucial roles in neuroplasticity, learning, and memory in many brain areas including the hippocampus, and are implicated in several neuropsychiatric diseases and neurodegenerative disorders. Two main types of SOM-containing cells in area CA1 of the hippocampus are oriens-lacunosum-moleculare (OLM) cells and hippocampo-septal (HS) cells. These cell types show many similarities in their soma-dendritic architecture, but they have different axonal targets, display different activity patterns in vivo, and are thought to have distinct network functions. However, a complete understanding of the functional roles of these interneurons requires a precise description of their intrinsic computational properties and their synaptic interactions. In the current study we generated, analyzed, and make available several key data sets that enable a quantitative comparison of various anatomical and physiological properties of OLM and HS cells in mouse. The data set includes detailed scanning electron microscopy (SEM)-based 3D reconstructions of OLM and HS cells along with their excitatory and inhibitory synaptic inputs. Combining this core data set with other anatomical data, patch-clamp electrophysiology, and compartmental modeling, we examined the precise morphological structure, inputs, outputs, and basic physiological properties of these cells. Our results highlight key differences between OLM and HS cells, particularly regarding the density and distribution of their synaptic inputs and mitochondria. For example, we estimated that an OLM cell receives about 8,400, whereas an HS cell about 15,600 synaptic inputs, about 16% of which are GABAergic. Our data and models provide insight into the possible basis of the different functionality of OLM and HS cell types and supply essential information for more detailed functional models of these neurons and the hippocampal network.


Subject(s)
Hippocampus , Interneurons , Mice , Animals , Hippocampus/physiology , Interneurons/physiology , Neurons , Somatostatin
4.
Nat Commun ; 14(1): 6159, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816713

ABSTRACT

Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval.


Subject(s)
Hippocampus , Neurons , Hippocampus/physiology , Neurons/metabolism , Entorhinal Cortex/physiology , Theta Rhythm/physiology , Parvalbumins/metabolism , Action Potentials/physiology , CA1 Region, Hippocampal/physiology
5.
Cell Rep ; 40(5): 111149, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35926456

ABSTRACT

Episodic learning and memory retrieval are dependent on hippocampal theta oscillation, thought to rely on the GABAergic network of the medial septum (MS). To test how this network achieves theta synchrony, we recorded MS neurons and hippocampal local field potential simultaneously in anesthetized and awake mice and rats. We show that MS pacemakers synchronize their individual rhythmicity frequencies, akin to coupled pendulum clocks as observed by Huygens. We optogenetically identified them as parvalbumin-expressing GABAergic neurons, while MS glutamatergic neurons provide tonic excitation sufficient to induce theta. In accordance, waxing and waning tonic excitation is sufficient to toggle between theta and non-theta states in a network model of single-compartment inhibitory pacemaker neurons. These results provide experimental and theoretical support to a frequency-synchronization mechanism for pacing hippocampal theta, which may serve as an inspirational prototype for synchronization processes in the central nervous system from Nematoda to Arthropoda to Chordate and Vertebrate phyla.


Subject(s)
Hippocampus , Theta Rhythm , Action Potentials/physiology , Animals , GABAergic Neurons/metabolism , Hippocampus/metabolism , Mice , Parvalbumins/metabolism , Rats , Theta Rhythm/physiology
6.
Elife ; 112022 01 18.
Article in English | MEDLINE | ID: mdl-35040779

ABSTRACT

Hippocampal place cells are activated sequentially as an animal explores its environment. These activity sequences are internally recreated ('replayed'), either in the same or reversed order, during bursts of activity (sharp wave-ripples [SWRs]) that occur in sleep and awake rest. SWR-associated replay is thought to be critical for the creation and maintenance of long-term memory. In order to identify the cellular and network mechanisms of SWRs and replay, we constructed and simulated a data-driven model of area CA3 of the hippocampus. Our results show that the chain-like structure of recurrent excitatory interactions established during learning not only determines the content of replay, but is essential for the generation of the SWRs as well. We find that bidirectional replay requires the interplay of the experimentally confirmed, temporally symmetric plasticity rule, and cellular adaptation. Our model provides a unifying framework for diverse phenomena involving hippocampal plasticity, representations, and dynamics, and suggests that the structured neural codes induced by learning may have greater influence over cortical network states than previously appreciated.


Subject(s)
Brain Waves/physiology , CA3 Region, Hippocampal/physiology , Learning/physiology , Place Cells/physiology , Animals , Hippocampus/physiology , Interneurons/physiology , Memory/physiology , Mice , Models, Theoretical , Sleep/physiology , Wakefulness/physiology
7.
PLoS Comput Biol ; 17(1): e1008114, 2021 01.
Article in English | MEDLINE | ID: mdl-33513130

ABSTRACT

Anatomically and biophysically detailed data-driven neuronal models have become widely used tools for understanding and predicting the behavior and function of neurons. Due to the increasing availability of experimental data from anatomical and electrophysiological measurements as well as the growing number of computational and software tools that enable accurate neuronal modeling, there are now a large number of different models of many cell types available in the literature. These models were usually built to capture a few important or interesting properties of the given neuron type, and it is often unknown how they would behave outside their original context. In addition, there is currently no simple way of quantitatively comparing different models regarding how closely they match specific experimental observations. This limits the evaluation, re-use and further development of the existing models. Further, the development of new models could also be significantly facilitated by the ability to rapidly test the behavior of model candidates against the relevant collection of experimental data. We address these problems for the representative case of the CA1 pyramidal cell of the rat hippocampus by developing an open-source Python test suite, which makes it possible to automatically and systematically test multiple properties of models by making quantitative comparisons between the models and electrophysiological data. The tests cover various aspects of somatic behavior, and signal propagation and integration in apical dendrites. To demonstrate the utility of our approach, we applied our tests to compare the behavior of several different rat hippocampal CA1 pyramidal cell models from the ModelDB database against electrophysiological data available in the literature, and evaluated how well these models match experimental observations in different domains. We also show how we employed the test suite to aid the development of models within the European Human Brain Project (HBP), and describe the integration of the tests into the validation framework developed in the HBP, with the aim of facilitating more reproducible and transparent model building in the neuroscience community.


Subject(s)
CA1 Region, Hippocampal , Electrophysiological Phenomena/physiology , Electrophysiology/methods , Models, Neurological , Software , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Computational Biology , Dendrites/physiology , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Rats
8.
Front Neural Circuits ; 15: 784034, 2021.
Article in English | MEDLINE | ID: mdl-34975416

ABSTRACT

Ascending serotonergic/glutamatergic projection from the median raphe region (MRR) to the hippocampal formation regulates both encoding and consolidation of memory and the oscillations associated with them. The firing of various types of MRR neurons exhibits rhythmic modulation coupled to hippocampal oscillatory activity. A possible intermediary between rhythm-generating forebrain regions and entrained ascending modulation may be the GABAergic circuit in the MRR, known to be targeted by a diverse array of top-down inputs. However, the activity of inhibitory MRR neurons in an awake animal is still largely unexplored. In this study, we utilized whole cell patch-clamp, single cell, and multichannel extracellular recordings of GABAergic and non-GABAergic MRR neurons in awake, head-fixed mice. First, we have demonstrated that glutamatergic and serotonergic neurons receive both transient, phasic, and sustained tonic inhibition. Then, we observed substantial heterogeneity of GABAergic firing patterns but a marked modulation of activity by brain states and fine timescale coupling of spiking to theta and ripple oscillations. We also uncovered a correlation between the preferred theta phase and the direction of activity change during ripples, suggesting the segregation of inhibitory neurons into functional groups. Finally, we could detect complementary alteration of non-GABAergic neurons' ripple-coupled activity. Our findings support the assumption that the local inhibitory circuit in the MRR may synchronize ascending serotonergic/glutamatergic modulation with hippocampal activity on a subsecond timescale.


Subject(s)
Hippocampus , Wakefulness , Animals , GABAergic Neurons , Mice , Serotonergic Neurons , Theta Rhythm
9.
Nat Neurosci ; 23(10): 1310, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32796932

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nat Neurosci ; 23(8): 992-1003, 2020 08.
Article in English | MEDLINE | ID: mdl-32572235

ABSTRACT

Basal forebrain cholinergic neurons (BFCNs) modulate synaptic plasticity, cortical processing, brain states and oscillations. However, whether distinct types of BFCNs support different functions remains unclear. Therefore, we recorded BFCNs in vivo, to examine their behavioral functions, and in vitro, to study their intrinsic properties. We identified two distinct types of BFCNs that differ in their firing modes, synchronization properties and behavioral correlates. Bursting cholinergic neurons (Burst-BFCNs) fired synchronously, phase-locked to cortical theta activity and fired precisely timed bursts after reward and punishment. Regular-firing cholinergic neurons (Reg-BFCNs) were found predominantly in the posterior basal forebrain, displayed strong theta rhythmicity and responded with precise single spikes after behavioral outcomes. In an auditory detection task, synchronization of Burst-BFCNs to the auditory cortex predicted the timing of behavioral responses, whereas tone-evoked cortical coupling of Reg-BFCNs predicted correct detections. We propose that differential recruitment of two basal forebrain cholinergic neuron types generates behavior-specific cortical activation.


Subject(s)
Basal Forebrain/physiology , Cholinergic Neurons/physiology , Cortical Synchronization/physiology , Action Potentials/physiology , Animals , Auditory Cortex/physiology , Mice , Neuronal Plasticity/physiology , Theta Rhythm/physiology
11.
PLoS One ; 15(5): e0233700, 2020.
Article in English | MEDLINE | ID: mdl-32469963

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and amyloid-beta (Aß) depositions generated by the proteolysis of amyloid precursor protein (APP) in the brain. In APPNL-F mice, APP gene was humanized and contains two familial AD mutations, and APP-unlike other mouse models of AD-is driven by the endogenous mouse APP promoter. Similar to people without apparent cognitive dysfunction but with heavy Aß plaque load, we found no significant decline in the working memory of adult APPNL-F mice, but these mice showed decline in the expression of normal anxiety. Using immunohistochemistry and 3D block-face scanning electron microscopy, we found no changes in GABAA receptor positivity and size of somatic and dendritic synapses of hippocampal interneurons. We did not find alterations in the level of expression of perineuronal nets around parvalbumin (PV) interneurons or in the density of PV- or somatostatin-positive hippocampal interneurons. However, in contrast to other investigated cell types, PV interneuron axons were occasionally mildly dystrophic around Aß plaques, and the synapses of PV-positive axon initial segment (AIS)-targeting interneurons were significantly enlarged. Our results suggest that PV interneurons are highly resistant to amyloidosis in APPNL-F mice and amyloid-induced increase in hippocampal pyramidal cell excitability may be compensated by PV-positive AIS-targeting cells. Mechanisms that make PV neurons more resilient could therefore be exploited in the treatment of AD for mitigating Aß-related inflammatory effects on neurons.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Hippocampus/metabolism , Interneurons/metabolism , Mutation , Nerve Net/metabolism , Peptide Fragments/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Axons/metabolism , Axons/pathology , Hippocampus/pathology , Humans , Interneurons/pathology , Memory, Short-Term , Mice , Mice, Transgenic , Nerve Net/pathology , Peptide Fragments/genetics , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism
12.
Proc Natl Acad Sci U S A ; 117(12): 6844-6854, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32144141

ABSTRACT

Chronic inflammation during Alzheimer's disease (AD) is most often attributed to sustained microglial activation in response to amyloid-ß (Aß) plaque deposits and cell death. However, cytokine release and microgliosis are consistently observed in AD transgenic animal models devoid of such pathologies, bringing into question the underlying processes that may be at play during the earliest AD-related immune response. We propose that this plaque-independent inflammatory reaction originates from neurons burdened with increasing levels of soluble and oligomeric Aß, which are known to be the most toxic amyloid species within the brain. Laser microdissected neurons extracted from preplaque amyloid precursor protein (APP) transgenic rats were found to produce a variety of potent immune factors, both at the transcript and protein levels. Neuron-derived cytokines correlated with the extent of microglial activation and mobilization, even in the absence of extracellular plaques and cell death. Importantly, we identified an inflammatory profile unique to Aß-burdened neurons, since neighboring glial cells did not express similar molecules. Moreover, we demonstrate within disease-vulnerable regions of the human brain that a neuron-specific inflammatory response may precede insoluble Aß plaque and tau tangle formation. Thus, we reveal the Aß-burdened neuron as a primary proinflammatory agent, implicating the intraneuronal accumulation of Aß as a significant immunological component in the AD pathogenesis.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Brain/pathology , Inflammation/pathology , Neurons/immunology , Plaque, Amyloid/pathology , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Amyloidosis , Animals , Brain/immunology , Brain/metabolism , Disease Models, Animal , Female , Humans , Inflammation/immunology , Inflammation/metabolism , Male , Neurons/metabolism , Neurons/pathology , Plaque, Amyloid/immunology , Plaque, Amyloid/metabolism , Rats , Rats, Transgenic
13.
Science ; 366(6469)2019 11 29.
Article in English | MEDLINE | ID: mdl-31780530

ABSTRACT

Adverse events need to be quickly evaluated and memorized, yet how these processes are coordinated is poorly understood. We discovered a large population of excitatory neurons in mouse median raphe region (MRR) expressing vesicular glutamate transporter 2 (vGluT2) that received inputs from several negative experience-related brain centers, projected to the main aversion centers, and activated the septohippocampal system pivotal for learning of adverse events. These neurons were selectively activated by aversive but not rewarding stimuli. Their stimulation induced place aversion, aggression, depression-related anhedonia, and suppression of reward-seeking behavior and memory acquisition-promoting hippocampal theta oscillations. By contrast, their suppression impaired both contextual and cued fear memory formation. These results suggest that MRR vGluT2 neurons are crucial for the acquisition of negative experiences and may play a central role in depression-related mood disorders.


Subject(s)
Aggression/physiology , Anhedonia/physiology , Avoidance Learning/physiology , Dorsal Raphe Nucleus/physiology , Vesicular Glutamate Transport Protein 2/metabolism , Animals , Depression/physiopathology , Dorsal Raphe Nucleus/metabolism , Evoked Potentials/physiology , Habenula/physiology , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Optogenetics , Theta Rhythm , Vesicular Glutamate Transport Protein 2/genetics
14.
Science ; 364(6442)2019 05 24.
Article in English | MEDLINE | ID: mdl-31123108

ABSTRACT

Hippocampal pyramidal cells encode memory engrams, which guide adaptive behavior. Selection of engram-forming cells is regulated by somatostatin-positive dendrite-targeting interneurons, which inhibit pyramidal cells that are not required for memory formation. Here, we found that γ-aminobutyric acid (GABA)-releasing neurons of the mouse nucleus incertus (NI) selectively inhibit somatostatin-positive interneurons in the hippocampus, both monosynaptically and indirectly through the inhibition of their subcortical excitatory inputs. We demonstrated that NI GABAergic neurons receive monosynaptic inputs from brain areas processing important environmental information, and their hippocampal projections are strongly activated by salient environmental inputs in vivo. Optogenetic manipulations of NI GABAergic neurons can shift hippocampal network state and bidirectionally modify the strength of contextual fear memory formation. Our results indicate that brainstem NI GABAergic cells are essential for controlling contextual memories.


Subject(s)
Association Learning/physiology , GABAergic Neurons/physiology , Raphe Nuclei/physiology , Animals , Female , Interneurons/chemistry , Interneurons/physiology , Male , Memory and Learning Tests , Mice , Mice, Inbred C57BL , Neural Inhibition/physiology , Pyramidal Cells/chemistry , Pyramidal Cells/physiology , Somatostatin/analysis , Somatostatin/physiology , Theta Rhythm
15.
Acta Neuropathol ; 136(6): 901-917, 2018 12.
Article in English | MEDLINE | ID: mdl-30362029

ABSTRACT

Growing evidence gathered from transgenic animal models of Alzheimer's disease (AD) indicates that the intraneuronal accumulation of amyloid-ß (Aß) peptides is an early event in the AD pathogenesis, producing cognitive deficits before the deposition of insoluble plaques. Levels of soluble Aß are also a strong indicator of synaptic deficits and concurrent AD neuropathologies in post-mortem AD brain; however, it remains poorly understood how this soluble amyloid pool builds within the brain in the decades leading up to diagnosis, when a patient is likely most amenable to early therapeutic interventions. Indeed, characterizing early intracellular Aß accumulation in humans has been hampered by the lack of Aß-specific antibodies, variability in the quality of available human brain tissue and the limitations of conventional microscopy. We therefore sought to investigate the development of the intraneuronal Aß pathology using extremely high-quality post-mortem brain material obtained from a cohort of non-demented subjects with short post-mortem intervals and processed by perfusion-fixation. Using well-characterized monoclonal antibodies, we demonstrate that the age-dependent intraneuronal accumulation of soluble Aß is pervasive throughout the entorhinal cortex and hippocampus, and that this phase of the amyloid pathology becomes established within AD-vulnerable regions before the deposition of Aß plaques and the formation of tau neurofibrillary tangles. We also show for the first time in post-mortem human brain that Aß oligomers do in fact accumulate intraneuronally, before the formation of extracellular plaques. Finally, we validated the origin of the Aß-immunopositive pool by resolving Aß- and APP/CTF-immunoreactive sites using super resolution structured illumination microscopy. Together, these findings indicate that the lifelong accrual of intraneuronal Aß may be a potential trigger for downstream AD-related pathogenic events in early disease stages.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Entorhinal Cortex/metabolism , Entorhinal Cortex/pathology , Neuropil/metabolism , tau Proteins/metabolism , Age Factors , Aged , Aged, 80 and over , Amyloid beta-Protein Precursor/metabolism , Animals , Female , Humans , Male , Middle Aged , Neurons/metabolism , Neurons/pathology , Neuropil/pathology , Subcellular Fractions/metabolism , Subcellular Fractions/pathology
16.
PLoS Comput Biol ; 14(9): e1006423, 2018 09.
Article in English | MEDLINE | ID: mdl-30222740

ABSTRACT

Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron's lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiments and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other is responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry.


Subject(s)
Hippocampus/physiology , Interneurons/physiology , Neurons/physiology , Pyramidal Cells/physiology , Action Potentials/physiology , Animals , Electrophysiology , Male , Models, Neurological , Rats , Rats, Sprague-Dawley , Synaptic Transmission/physiology
17.
Nat Commun ; 9(1): 2848, 2018 07 20.
Article in English | MEDLINE | ID: mdl-30030438

ABSTRACT

The basal forebrain cholinergic system is widely assumed to control cortical functions via non-synaptic transmission of a single neurotransmitter. Yet, we find that mouse hippocampal cholinergic terminals invariably establish GABAergic synapses, and their cholinergic vesicles dock at those synapses only. We demonstrate that these synapses do not co-release but co-transmit GABA and acetylcholine via different vesicles, whose release is triggered by distinct calcium channels. This co-transmission evokes composite postsynaptic potentials, which are mutually cross-regulated by presynaptic autoreceptors. Although postsynaptic cholinergic receptor distribution cannot be investigated, their response latencies suggest a focal, intra- and/or peri-synaptic localisation, while GABAA receptors are detected intra-synaptically. The GABAergic component alone effectively suppresses hippocampal sharp wave-ripples and epileptiform activity. Therefore, the differentially regulated GABAergic and cholinergic co-transmission suggests a hitherto unrecognised level of control over cortical states. This novel model of hippocampal cholinergic neurotransmission may lead to alternative pharmacotherapies after cholinergic deinnervation seen in neurodegenerative disorders.


Subject(s)
Acetylcholine/physiology , Hippocampus/physiology , Receptors, GABA-A/physiology , gamma-Aminobutyric Acid/physiology , Animals , Calcium/physiology , Dendrites/physiology , Female , Imaging, Three-Dimensional , Male , Mice , Mice, Inbred C57BL , Neurodegenerative Diseases/physiopathology , Neurotransmitter Agents/physiology , Perfusion , Synapses/physiology , Synaptic Potentials , Synaptic Transmission , Synaptic Vesicles/physiology
18.
Cell Rep ; 23(6): 1706-1715, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29742427

ABSTRACT

Animals build a model of their surroundings on the basis of information gathered during exploration. Rearing on the hindlimbs changes the vantage point of the animal, increasing the sampled area of the environment. This environmental knowledge is suggested to be integrated into a cognitive map stored by the hippocampus. Previous studies have found that damage to the hippocampus impairs rearing. Here, we characterize the operational state of the hippocampus during rearing episodes. We observe an increase of theta frequency paralleled by a sink in the dentate gyrus and a prominent theta-modulated fast gamma transient in the middle molecular layer. On the descending phase of rearing, a decrease of theta power is detected. Place cells stop firing during rearing, while a different subset of putative pyramidal cells is activated. Our results suggest that the hippocampus switches to a different operational state during rearing, possibly to update spatial representation with information from distant sources.


Subject(s)
Behavior, Animal/physiology , Hippocampus/physiology , Nerve Net/physiology , Animals , Dentate Gyrus/physiology , Entorhinal Cortex/physiology , Male , Mice, Inbred C57BL , Theta Rhythm/physiology
19.
Front Mol Neurosci ; 10: 325, 2017.
Article in English | MEDLINE | ID: mdl-29075178

ABSTRACT

Serotonergic and glutamatergic neurons of median raphe region (MRR) play a pivotal role in the modulation of affective and cognitive functions. These neurons synapse both onto themselves and remote cortical areas. P2X7 receptors (P2rx7) are ligand gated ion channels expressed by central presynaptic excitatory nerve terminals and involved in the regulation of neurotransmitter release. P2rx7s are implicated in various neuropsychiatric conditions such as schizophrenia and depression. Here we investigated whether 5-HT release released from the hippocampal terminals of MRR is subject to modulation by P2rx7s. To achieve this goal, an optogenetic approach was used to selectively activate subpopulation of serotonergic terminals derived from the MRR locally, and one of its target area, the hippocampus. Optogenetic activation of neurons in the MRR with 20 Hz was correlated with freezing and enhanced locomotor activity of freely moving mice and elevated extracellular levels of 5-HT, glutamate but not GABA in vivo. Similar optical stimulation (OS) significantly increased [3H]5-HT and [3H]glutamate release in acute MRR and hippocampal slices. We examined spatial and temporal patterns of [3H]5-HT release and the interaction between the serotonin and glutamate systems. Whilst [3H]5-HT release from MRR neurons was [Ca2+]o-dependent and sensitive to TTX, CNQX and DL-AP-5, release from hippocampal terminals was not affected by the latter drugs. Hippocampal [3H]5-HT released by electrical but not OS was subject to modulation by 5- HT1B/D receptors agonist sumatriptan (1 µM), whereas the selective 5-HT1A agonist buspirone (0.1 µM) was without effect. [3H]5-HT released by electrical and optical stimulation was decreased in mice genetically deficient in P2rx7s, and after perfusion with selective P2rx7 antagonists, JNJ-47965567 (0.1 µM), and AZ-10606120 (0.1 µM). Optical and electrical stimulation elevated the extracellular level of ATP. Our results demonstrate for the first time the modulation of 5-HT release from hippocampal MRR terminals by the endogenous activation of P2rx7s. P2rx7 mediated modulation of 5-HT release could contribute to various physiological and pathophysiological phenomena, related to hippocampal serotonergic transmission.

20.
PLoS One ; 12(7): e0181264, 2017.
Article in English | MEDLINE | ID: mdl-28708877

ABSTRACT

The median raphe region (MRR) is believed to control the fear circuitry indirectly, by influencing the encoding and retrieval of fear memories by amygdala, hippocampus and prefrontal cortex. Here we show that in addition to this established role, MRR stimulation may alone elicit the emergence of remote but not recent fear memories. We substituted electric shocks with optic stimulation of MRR in C57BL/6N male mice in an optogenetic conditioning paradigm and found that stimulations produced agitation, but not fear, during the conditioning trial. Contextual fear, reflected by freezing was not present the next day, but appeared after a 7 days incubation. The optogenetic silencing of MRR during electric shocks ameliorated conditioned fear also seven, but not one day after conditioning. The optogenetic stimulation patterns (50Hz theta burst and 20Hz) used in our tests elicited serotonin release in vitro and lead to activation primarily in the periaqueductal gray examined by c-Fos immunohistochemistry. Earlier studies demonstrated that fear can be induced acutely by stimulation of several subcortical centers, which, however, do not generate persistent fear memories. Here we show that the MRR also elicits fear, but this develops slowly over time, likely by plastic changes induced by the area and its connections. These findings assign a specific role to the MRR in fear learning. Particularly, we suggest that this area is responsible for the durable sensitization of fear circuits towards aversive contexts, and by this, it contributes to the persistence of fear memories. This suggests the existence a bottom-up control of fear circuits by the MRR, which complements the top-down control exerted by the medial prefrontal cortex.


Subject(s)
Brain/physiology , Animals , Behavior, Animal , Electroshock , Fear/physiology , Halorhodopsins/metabolism , Immunohistochemistry , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Periaqueductal Gray/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Serotonin/metabolism , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...